Efficient image encryption using two-dimensional enhanced hyperchaotic Henon map

2020 ◽  
Vol 29 (02) ◽  
pp. 1
Author(s):  
Hongxiang Zhao ◽  
Shucui Xie ◽  
Jianzhong Zhang ◽  
Tong Wu
2019 ◽  
Vol 93 ◽  
pp. 115-127 ◽  
Author(s):  
Kanglei Zhou ◽  
Minghui Xu ◽  
Jidong Luo ◽  
Haiju Fan ◽  
Ming Li

2012 ◽  
Vol 569 ◽  
pp. 447-450
Author(s):  
Xiao Zhou Chen ◽  
Liang Lin Xiong ◽  
Long Li

In two-dimensional chaotic dynamics, relationship between fractal dimensions and topological entropies is an important issue to understand the chaotic attractors of Hénon map. we proposed a efficient approach for the estimation of topological entropies through the study on the integral relationship between fractal dimensions and topological entropies. Our result found that there is an approximate linear relation between their topological entropies and fractal dimensions.


We study the qualitative dynamics of two-parameter families of planar maps of the form F^e(x, y) = (y, -ex+f(y)), where f :R -> R is a C 3 map with a single critical point and negative Schwarzian derivative. The prototype of such maps is the family f(y) = u —y 2 or (in different coordinates) f(y) = Ay(1 —y), in which case F^ e is the Henon map. The maps F e have constant Jacobian determinant e and, as e -> 0, collapse to the family f^. The behaviour of such one-dimensional families is quite well understood, and we are able to use their bifurcation structures and information on their non-wandering sets to obtain results on both local and global bifurcations of F/ ue , for small e . Moreover, we are able to extend these results to the area preserving family F/u. 1 , thereby obtaining (partial) bifurcation sets in the (/u, e)-plane. Among our conclusions we find that the bifurcation sequence for periodic orbits, which is restricted by Sarkovskii’s theorem and the kneading theory for one-dimensional maps, is quite different for two-dimensional families. In particular, certain periodic orbits that appear at the end of the one-dimensional sequence appear at the beginning of the area preserving sequence, and infinitely many families of saddle node and period doubling bifurcation curves cross each other in the ( /u, e ) -parameter plane between e = 0 and e = 1. We obtain these results from a study of the homoclinic bifurcations (tangencies of stable and unstable manifolds) of F /u.e and of the associated sequences of periodic bifurcations that accumulate on them. We illustrate our results with some numerical computations for the orientation-preserving Henon map.


Sign in / Sign up

Export Citation Format

Share Document