scholarly journals Hedgerow object detection in very high-resolution satellite images using convolutional neural networks

2021 ◽  
Vol 15 (01) ◽  
Author(s):  
Steve Ahlswede ◽  
Sarah Asam ◽  
Achim Röder
2020 ◽  
Vol 12 (3) ◽  
pp. 458 ◽  
Author(s):  
Ugur Alganci ◽  
Mehmet Soydas ◽  
Elif Sertel

Object detection from satellite images has been a challenging problem for many years. With the development of effective deep learning algorithms and advancement in hardware systems, higher accuracies have been achieved in the detection of various objects from very high-resolution (VHR) satellite images. This article provides a comparative evaluation of the state-of-the-art convolutional neural network (CNN)-based object detection models, which are Faster R-CNN, Single Shot Multi-box Detector (SSD), and You Look Only Once-v3 (YOLO-v3), to cope with the limited number of labeled data and to automatically detect airplanes in VHR satellite images. Data augmentation with rotation, rescaling, and cropping was applied on the test images to artificially increase the number of training data from satellite images. Moreover, a non-maximum suppression algorithm (NMS) was introduced at the end of the SSD and YOLO-v3 flows to get rid of the multiple detection occurrences near each detected object in the overlapping areas. The trained networks were applied to five independent VHR test images that cover airports and their surroundings to evaluate their performance objectively. Accuracy assessment results of the test regions proved that Faster R-CNN architecture provided the highest accuracy according to the F1 scores, average precision (AP) metrics, and visual inspection of the results. The YOLO-v3 ranked as second, with a slightly lower performance but providing a balanced trade-off between accuracy and speed. The SSD provided the lowest detection performance, but it was better in object localization. The results were also evaluated in terms of the object size and detection accuracy manner, which proved that large- and medium-sized airplanes were detected with higher accuracy.


2019 ◽  
Vol 135 ◽  
pp. 01064
Author(s):  
Vladimir Khryaschev ◽  
Leonid Ivanovsky

The goal of our research was to develop methods based on convolutional neural networks for automatically extracting the locations of buildings from high-resolution aerial images. To analyze the quality of developed deep learning algorithms, there was used Sorensen-Dice coefficient of similarity which compares results of algorithms with real masks. These masks were generated automatically from json files and sliced on smaller parts together with respective aerial photos before the training of developed convolutional neural networks. This approach allows us to cope with the problem of segmentation for high-resolution satellite images. All in all we show how deep neural networks implemented and launched on modern GPUs of high-performance supercomputer NVIDIA DGX-1 can be used to efficiently learn and detect needed objects. The problem of building detection on satellite images can be put into practice for urban planning, building control of some municipal objects, search of the best locations for future outlets etc.


Sign in / Sign up

Export Citation Format

Share Document