scholarly journals Variability of the snowline altitude in the eastern Tibetan Plateau from 1995 to 2016 using Google Earth Engine

2021 ◽  
Vol 15 (04) ◽  
Author(s):  
Chang Liu ◽  
Zhen Li ◽  
Ping Zhang ◽  
Bangsen Tian ◽  
Jianmin Zhou ◽  
...  
2020 ◽  
Vol 11 (1) ◽  
pp. 11-21
Author(s):  
Dong-Liang LUO ◽  
Hui-Jun JIN ◽  
He-Qiang DU ◽  
Chao LI ◽  
Qiang MA ◽  
...  

2020 ◽  
Vol 12 (16) ◽  
pp. 2651
Author(s):  
Wen He ◽  
Chongchong Ye ◽  
Jian Sun ◽  
Junnan Xiong ◽  
Jinniu Wang ◽  
...  

The alpine timberline, an ecosystem ecotone, indicates climatic change and is tending to shift toward higher altitudes because of an increase in global warming. However, spatiotemporal variations of the alpine timberline are not consistent on a global scale. The abundant and highest alpine timberline, located on the Tibetan Plateau, is less subject to human activity and disturbance. Although many studies have investigated the alpine timberline on the Tibetan Plateau, large-scale monitoring of spatial-temporal dynamics and driving mechanisms of the alpine timberline remain uncertain and inaccurate. Hence, the Gongga Mountain on the southeastern Tibetan Plateau was chosen as the study area because of the most complete natural altitudinal zonation. We used the Otsu method on Google Earth Engine to extract the alpine timberline from 1987–2019 based on the normalized difference vegetation index (NDVI). Then, the alpine timberline spatiotemporal patterns and the effect of topography on alpine timberline distribution were explored. Four hillsides on the western Gongga Mountain were selected to examine the hillside differences and drivers of the alpine timberline based on principal component analysis (PCA) and multiple linear regression (MLR). The results indicated that the elevation range of alpine timberline was 3203–4889 m, and the vegetation coverage increased significantly (p < 0.01) near the alpine timberline ecotone on Gongga Mountain. Moreover, there was spatial heterogeneity in dynamics of alpine timberline, and some regions showed no regular trend in variations. The spatial pattern of the alpine timberline was generally high in the west, low in the east, and primarily distributed on 15–55° slopes. Besides, the drivers of the alpine timberline have the hillside differences, and the sunny and shady slopes possessed different driving factors. Thus, our results highlight the effects of topography and climate on the alpine timberline on different hillsides. These findings could provide a better approach to study the dynamics and formation of alpine timberlines.


2018 ◽  
Vol 12 (7) ◽  
pp. 2327-2340 ◽  
Author(s):  
Zeze Ran ◽  
Gengnian Liu

Abstract. Rock glaciers are typical periglacial landforms. They can indicate the existence of permafrost, and can also shed light on the regional geomorphological and climatic conditions under which they may have developed. This article provides the first rock glacier inventory of Daxue Shan, south-eastern Tibetan Plateau. The inventory is based on analyses of Google Earth imagery. In total, 295 rock glaciers were identified in Daxue Shan, covering a total area of 55.70 km2 between the altitudes of 4300 and 4600 m above sea level. Supported by ArcGIS and SPSS software programmes, we extracted and calculated morphometric parameters of these rock glaciers, and analysed the characteristics of their spatial distribution within Daxue Shan. Our inventory suggests that the lower altitudinal boundary for permafrost across the eight aspects of observed slopes differs significantly and that the lower altitudinal permafrost boundary is ∼ 104 m higher on western than eastern-facing slopes. Moraine-type and talus-derived rock glaciers exhibit mean gradients that are all concentrated within the 22–35∘ range. However, lobate rock glaciers (27–45∘) have a higher mean gradient than tongue-shaped rock glaciers (22–35∘). Shady (i.e. N, NE, and E) slopes appear related to the presence of moraine-type rock glaciers, whereas sunny (i.e. W, SW, and S) slopes appear related to the presence of talus-derived rock glaciers. Rock glaciers in Daxue Shan are more concentrated within tertiary monzonitic granite, which is more sensitive than other lithological components to the freeze–thaw process. Continuous weathering of this substrate provides the ideal raw material for the rock glacier development. These results show that environmental controls (i.e. topographical, climatic, lithological factors) greatly affect the formation and development of rock glaciers. This study provides important data for exploring the relation between maritime periglacial environments and the development of rock glaciers on the south-eastern Tibetan Plateau (TP). It may also highlight the characteristics typical of rock glaciers found in a maritime setting.


2021 ◽  
Vol 13 (12) ◽  
pp. 2289
Author(s):  
Yuanyuan Di ◽  
Geli Zhang ◽  
Nanshan You ◽  
Tong Yang ◽  
Qiang Zhang ◽  
...  

The Tibetan Plateau (TP), known as “The Roof of World”, has expansive alpine grasslands and is a hotspot for climate change studies. However, cropland expansion and increasing anthropogenic activities have been poorly documented, let alone the effects of agricultural activities on food security and environmental change in the TP. The existing cropland mapping products do not depict the spatiotemporal characteristics of the TP due to low accuracies and inconsistent cropland distribution, which is affected by complicated topography and impedes our understanding of cropland expansion and its associated environmental impacts. One of the biggest challenges of cropland mapping in the TP is the diverse crop phenology across a wide range of elevations. To decrease the classification errors due to elevational differences in crop phenology, we developed two pixel- and phenology-based algorithms to map croplands using Landsat imagery and the Google Earth Engine platform along the Brahmaputra River and its two tributaries (BRTT) in the Tibet Autonomous Region, also known as the granary of TP, in 2015–2019. Our first phenology-based cropland mapping algorithm (PCM1) used different thresholds of land surface water index (LSWI) by considering varied crop phenology along different elevations. The second algorithm (PCM2) further offsets the phenological discrepancy along elevational gradients by considering the length and peak of the growing season. We found that PCM2 had a higher accuracy with fewer images compared with PCM1. The number of images for PCM2 was 279 less than PCM1, and the Matthews correlation coefficient for PCM2 was 0.036 higher than PCM1. We also found that the cropland area in BRTT was estimated to be 1979 ± 52 km2 in the late 2010s. Croplands were mainly distributed in the BRTT basins with elevations of 3800–4000 m asl. Our phenology-based methods were effective for mapping croplands in mountainous areas. The spatially explicit information on cropland area and distribution in the TP aid future research into the effects of cropland expansion on food security and environmental change in the TP.


2020 ◽  
Vol 12 (19) ◽  
pp. 3139
Author(s):  
Chenli Liu ◽  
Wenlong Li ◽  
Gaofeng Zhu ◽  
Huakun Zhou ◽  
Hepiao Yan ◽  
...  

As an important production base for livestock and a unique ecological zone in China, the northeast Tibetan Plateau has experienced dramatic land use/land cover (LULC) changes with increasing human activities and continuous climate change. However, extensive cloud cover limits the ability of optical remote sensing satellites to monitor accurately LULC changes in this area. To overcome this problem in LULC mapping in the Ganan Prefecture, 2000–2018, we used the dense time stacking of multi-temporal Landsat images and random forest algorithm based on the Google Earth Engine (GEE) platform. The dynamic trends of LULC changes were analyzed, and geographical detectors quantitatively evaluated the key driving factors of these changes. The results showed that (1) the overall classification accuracy varied between 89.14% and 91.41%, and the kappa values were greater than 86.55%, indicating that the classification results were reliably accurate. (2) The major LULC types in the study area were grassland and forest, and their area accounted for 50% and 25%, respectively. During the study period, the grassland area decreased, while the area of forest land and construction land increased to varying degrees. The land-use intensity presents multi-level intensity, and it was higher in the northeast than that in the southwest. (3) Elevation and population density were the major driving factors of LULC changes, and economic development has also significantly affected LULC. These findings revealed the main factors driving LULC changes in Gannan Prefecture and provided a reference for assisting in the development of sustainable land management and ecological protection policy decisions.


Sign in / Sign up

Export Citation Format

Share Document