Parallel image registration method for snapshot Fourier transform imaging spectroscopy

2017 ◽  
Vol 56 (8) ◽  
pp. 081802
Author(s):  
Yu Zhang ◽  
Shuaishuai Zhu ◽  
Jie Lin ◽  
Feijia Zhu ◽  
Peng Jin
2018 ◽  
Vol 10 (11) ◽  
pp. 1719 ◽  
Author(s):  
Yunyun Dong ◽  
Weili Jiao ◽  
Tengfei Long ◽  
Guojin He ◽  
Chengjuan Gong

Image registration is a core technology of many different image processing areas and is widely used in the remote sensing community. The accuracy of image registration largely determines the effect of subsequent applications. In recent years, phase correlation-based image registration has drawn much attention because of its high accuracy and efficiency as well as its robustness to gray difference and even slight changes in content. Many researchers have reported that the phase correlation method can acquire a sub-pixel accuracy of 1 / 10 or even 1 / 100 . However, its performance is acquired only in the case of translation, which limits the scope of the application of the method. However, there are few reports on the estimation of scales and angles based on the phase correlation method. To take advantage of the high accuracy property and other merits of phase correlation-based image registration and extend it to estimate the similarity transform, we proposed a novel algorithm, the Multilayer Polar Fourier Transform (MPFT), which uses a fast and accurate polar Fourier transform with different scaling factors to calculate the log-polar Fourier transform. The structure of the polar grids of MPFT is more similar to the one of the log-polar grid. In particular, for rotation estimation only, the polar grid of MPFT is the calculation grid. To validate its effectiveness and high accuracy in estimating angles and scales, both qualitative and quantitative experiments were carried out. The quantitative experiments included a numerical simulation as well as synthetic and real data experiments. The experimental results showed that the proposed method, MPFT, performs better than the existing phase correlation-based similarity transform estimation methods, the Pseudo-polar Fourier Transform (PPFT) and the Multilayer Fractional Fourier Transform method (MLFFT), and the classical feature-based registration method, Scale-Invariant Feature Transform (SIFT), and its variant, ms-SIFT.


Author(s):  
D. Gao ◽  
X. Zhao ◽  
X. Pan

Image registration is one of the most important applications in the field of image processing. The method of Fourier Merlin transform, which has the advantages of high precision and good robustness to change in light and shade, partial blocking, noise influence and so on, is widely used. However, not only this method can’t obtain the unique mutual power pulse function for non-parallel image pairs, even part of image pairs also can’t get the mutual power function pulse. In this paper, an image registration method based on Fourier-Mellin transformation in the view of projection-gradient preprocessing is proposed. According to the projection conformational equation, the method calculates the matrix of image projection transformation to correct the tilt image; then, gradient preprocessing and Fourier-Mellin transformation are performed on the corrected image to obtain the registration parameters. Eventually, the experiment results show that the method makes the image registration of Fourier-Mellin transformation not only applicable to the registration of the parallel image pairs, but also to the registration of non-parallel image pairs. What’s more, the better registration effect can be obtained


2006 ◽  
Author(s):  
Jakub Bican

Phase Correlation Method (PCM or SPOMF - Symmetric Phase-Only Matched Filter) is a well known image registration method, that exploits Fourier Shift Theorem property of Fourier Transform. Even though it is limited to estimate only shifts between two images, it is very useful as it is robust to frequency-dependent noise and initial image overlap area. Furthermore, it evaluates very fast by way of two forward FFTs, one complex image division and one inverse FFT.


2018 ◽  
Vol 232 ◽  
pp. 02044
Author(s):  
Zibo Zhou ◽  
Libing Jiang ◽  
Zhuang Wang

Image registration is a key intermediate step for Interferometric Inverse Synthetic Aperture Radar (InISAR) three-dimensional (3D) imaging. It arranges the same scatterers of the target on the same pixel cell in different ISAR images, which makes the interferometric processing carried on between the same scatterers to obtain its 3D coordinates. This paper proposes a novel ISAR image registration method of three steps. Firstly, chirp Fourier transform is used to estimate the rotational angular velocity of the target. Secondly, the compensation phase is constructed, according to the rotational angular velocity, to eliminate the wave path difference between different radars echoes. Finally, two-dimensional (2D) Fourier transform is used to yield registered ISAR images. The proposed method achieves the ISAR image registration through phase compensation in echo field, therefore, no extra computation is needed in image field. The experiment results demonstrate the advantages of the proposed method in precision, computation efficiency and practicability.


Author(s):  
Lin Yang ◽  
Leiguang Gong ◽  
Hong Zhang ◽  
J.L. Nosher ◽  
D.J. Foran

2012 ◽  
Author(s):  
Takahiro Kawamura ◽  
Norihiro Omae ◽  
Masahiko Yamada ◽  
Wataru Ito ◽  
Kiyosumi Kawamoto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document