University of Michigan ground-based Circle-to-Line Fabry-Perot Interferometer and its applications in mesosphere and lower thermosphere dynamics studies

1994 ◽  
Author(s):  
Jinxue Wang ◽  
Jian Wu ◽  
Paul B. Hays
2020 ◽  
Author(s):  
Olga S. Zorkaltseva ◽  
Roman V. Vasilyev

Abstract. In this paper, we study the response of the mesosphere and lower thermosphere (MLT) to sudden stratospheric warmings (SSWs) and the activity of stationary planetary waves (SPWs). We observe the 557.7-nm optical emission for retrieve the MLT wind, temperature with the Fabry-Perot interferometer (FPI) that has no analogues in Russia. The FPI is located at the mid-latitudes of Eastern Siberia within the Tory Observatory (TOR) at the Institute of Solar-Terrestrial Physics of the Siberian Branch of the Russian Academy of Sciences (ISTP SB RAS, 51.8N, 103.1E). Regular interferometer monitoring started in Dec 2016. Here, we address the temporal variations in the 557.7-nm emission intensity, as well as the variations in wind, temperature, and their variability obtained by using the line parameters measurement during the 2016–2020 winters. Both SSWs and SPWs appear to have equally strong effects in the upper atmosphere. When the 557.7-nm emission decreases due to some influences from below (SSWs or SPWs), the temperature variation observed by using this line and the temperature itself increase significantly. The zonal wind dispersion does not show significant SPW- and SSW-correlated variations, but the dominant zonal wind reverses during major SSW events the same as the averaged zonal wind at 60N in the stratosphere does without significant delays.


2005 ◽  
Vol 62 (12) ◽  
pp. 4384-4399 ◽  
Author(s):  
Rolando R. Garcia ◽  
Ruth Lieberman ◽  
James M. Russell ◽  
Martin G. Mlynczak

Abstract Observations made by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on board NASA’s Thermosphere–Ionosphere–Mesosphere Energetics and Dynamics (TIMED) satellite have been processed using Salby’s fast Fourier synoptic mapping (FFSM) algorithm. The mapped data provide a first synoptic look at the mean structure and traveling waves of the mesosphere and lower thermosphere (MLT) since the launch of the TIMED satellite in December 2001. The results show the presence of various wave modes in the MLT, which reach largest amplitude above the mesopause and include Kelvin and Rossby–gravity waves, eastward-propagating diurnal oscillations (“non-sun-synchronous tides”), and a set of quasi-normal modes associated with the so-called 2-day wave. The latter exhibits marked seasonal variability, attaining large amplitudes during the solstices and all but disappearing at the equinoxes. SABER data also show a strong quasi-stationary Rossby wave signal throughout the middle atmosphere of the winter hemisphere; the signal extends into the Tropics and even into the summer hemisphere in the MLT, suggesting ducting by westerly background zonal winds. At certain times of the year, the 5-day Rossby normal mode and the 4-day wave associated with instability of the polar night jet are also prominent in SABER data.


2015 ◽  
Vol 56 (7) ◽  
pp. 1354-1365 ◽  
Author(s):  
Xin Yao ◽  
Tao Yu ◽  
Biqiang Zhao ◽  
You Yu ◽  
Libo Liu ◽  
...  

1994 ◽  
Vol 56 (13-14) ◽  
pp. 1731-1752 ◽  
Author(s):  
Yu.I. Portnyagin ◽  
N.A. Makarov ◽  
R.P. Chebotarev ◽  
A.M. Nikonov ◽  
E.S. Kazimirovsky ◽  
...  

1999 ◽  
Vol 24 (11) ◽  
pp. 1571-1576 ◽  
Author(s):  
P.J.S. Williams ◽  
N.J. Mitchell ◽  
A.G. Beard ◽  
V.St.C. Howells ◽  
H.G. Muller

Sign in / Sign up

Export Citation Format

Share Document