mesosphere and lower thermosphere
Recently Published Documents


TOTAL DOCUMENTS

519
(FIVE YEARS 87)

H-INDEX

52
(FIVE YEARS 3)

2021 ◽  
Vol 19 ◽  
pp. 185-193
Author(s):  
Christoph Jacobi ◽  
Friederike Lilienthal ◽  
Dmitry Korotyshkin ◽  
Evgeny Merzlyakov ◽  
Gunter Stober

Abstract. Observations of upper mesosphere/lower thermosphere (MLT) wind have been performed at Collm (51.3∘ N, 13.0∘ E) and Kazan (56∘ N, 49∘ E), using two SKiYMET all-sky meteor radars with similar configuration. Daily vertical profiles of mean winds and tidal amplitudes have been constructed from hourly horizontal winds. We analyse the response of mean winds and tidal amplitudes to geomagnetic disturbances. To this end, we compare winds and amplitudes for very quiet (Ap ≤ 5) and unsettled/disturbed (Ap ≥ 20) geomagnetic conditions. Zonal winds in both the mesosphere and lower thermosphere are weaker during disturbed conditions for both summer and winter. The summer equatorward meridional wind jet is weaker for disturbed geomagnetic conditions. Tendencies for geomagnetic effects on mean winds over Collm and Kazan qualitatively agree during most of the year. For the diurnal tide, amplitudes in summer are smaller in the mesosphere and greater in the lower thermosphere, but no clear tendency is seen for winter. Semidiurnal tidal amplitudes increase during geomagnetic active days in summer and winter. Terdiurnal amplitudes are slightly reduced in the mesosphere during disturbed days, but no clear effect is visible for the lower thermosphere. Overall, while there is a noticeable effect of geomagnetic variability on the mean wind, the effect on tidal amplitudes, except for the semidiurnal tide, is relatively small and partly different over Collm and Kazan.


2021 ◽  
Author(s):  
Neil P. Hindley ◽  
Neil Cobbett ◽  
David C. Fritts ◽  
Diego Janchez ◽  
Nicholas J. Mitchell ◽  
...  

Abstract. The mesosphere and lower thermosphere (MLT) is a dynamic layer of the earth’s atmosphere. This region marks the interface at which neutral atmosphere dynamics begin to influence the ionosphere and space weather. However, our understanding of this region and our ability to accurately simulate it in global circulation models (GCMs) is limited by a lack of observations, especially in remote locations. To this end, a meteor radar was deployed on the remote mountainous island of South Georgia (54° S, 36° W) in the Southern Ocean from 2016 to 2020. The goal of this study is to use these new measurements to characterise the fundamental dynamics of the MLT above South Georgia including large-scale winds, solar tides, planetary waves (PWs) and mesoscale gravity waves (GWs). We first present an improved method for time-height localisation of radar wind measurements and characterise the large-scale MLT winds. We then explore the amplitudes and phases of the diurnal (24 h), semidiurnal (12 h) and terdiurnal (8 h) solar tides at this latitude. We also explore PW activity and find very large amplitudes up to 30 ms−1 for the quasi-2 day wave in summer and show that the dominant modes of the quasi-5, 10 and 16 day waves are westward W1 and W2. We investigate wind variance due to GWs in the MLT and use a new method to show an east-west tendency of GW variance of up to 20 % during summer and a weaker north-south tendency of 0–5 % during winter. This is contrary to the expected tendency of GW directions in the winter stratosphere below, which is a strong suggestion of secondary GW (2GW) observations in the MLT. Lastly, comparison of radar winds to a climatological Whole Atmosphere Community Climate Model (WACCM) simulation reveals a simulated summertime mesopause and zonal wind shear that occur at altitudes around 10 km lower than observed, and southward winds during winter above 90 km altitude in the model that are not seen in observations. Further, wintertime zonal winds above 85 km altitude are eastward in radar observations but in WACCM they are found to weaken and reverse to westward. Recent studies have linked this discrepancy to the impact of 2GWs on the residual circulation which are not included in WACCM. These measurements therefore provide vital constraints that can guide the development of GCMs as they extend upwards into this important region of the atmosphere.


Atmosphere ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1386
Author(s):  
Robin Wing ◽  
Milena Martic ◽  
Colin Triplett ◽  
Alain Hauchecorne ◽  
Jacques Porteneuve ◽  
...  

During a recent 2020 campaign, the Rayleigh lidar aboard the Bâtiment d’Essais et de Mesures (BEM) Monge conducted high-resolution temperature measurements of the upper Mesosphere and Lower Thermosphere (MLT). These measurements were used to conduct the first validation of ICON-MIGHTI temperatures by Rayleigh lidar. A double Mesospheric Inversion Layer (MIL) as well as shorter-period gravity waves was observed. Zonal and meridional wind speeds were obtained from locally launched radiosondes and the newly launched ICON satellite as well as from the European Centre for Medium-Range Weather Forecasts (ECMWF-ERA5) reanalysis. These three datasets allowed us to see the evolution of the winds in response to the forcing from the MIL and gravity waves. The wavelet analysis of a case study suggests that the wave energy was dissipated in small, intense, transient instabilities about a given wavenumber in addition to via a broad spectrum of breaking waves. This article will also detail the recent hardware advances of the Monge lidar that have allowed for the measurement of MILs and gravity waves at a resolution of 5 min with an effective vertical resolution of 926 m.


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Hao Cheng ◽  
Kaiming Huang ◽  
Alan Z. Liu ◽  
Shaodong Zhang ◽  
Chunming Huang ◽  
...  

AbstractUsing meteor radar, radiosonde observations and MERRA-2 reanalysis data from 12 August to 31 October 2006, we report a dynamical coupling from the tropical lower atmosphere to the mesosphere and lower thermosphere through a quasi-27-day intraseasonal oscillation (ISO). It is interesting that the quasi-27-day ISO is observed in the troposphere, stratopause and mesopause regions, exhibiting a three-layer structure. In the MLT, the amplitude in the zonal wind increases from about 4 ms−1 at 90 km to 15 ms−1 at 100 km, which is different from previous observations that ISOs occurs generally in winter with an amplitude peak at about 80–90 km, and then are rapidly weakened with increasing height. Outgoing longwave radiation (OLR) and specific humidity demonstrate that there is a quasi-27-day periodicity in convective activity in the tropics, which causes the ISO of the zonal wind and gravity wave (GW) activity in the troposphere. The upward propagating GWs are further modulated by the oscillation in the troposphere and upper stratosphere. As the GWs propagate to the MLT, the quasi-27-day oscillation in the wind field is induced with a clear phase opposite to that in the lower atmosphere through instability and dissipation of these modulated GWs. Wavelet analysis shows that the quasi-27-day variability in the MLT appears as a case event rather than a persistent phenomenon, and has not a clear corresponding relation with the solar rotation effect within 1 year of observations.


2021 ◽  
Vol 21 (17) ◽  
pp. 13631-13654
Author(s):  
Fabio Vargas ◽  
Jorge L. Chau ◽  
Harikrishnan Charuvil Asokan ◽  
Michael Gerding

Abstract. We describe in this study the analysis of small and large horizontal-scale gravity waves from datasets composed of images from multiple mesospheric airglow emissions as well as multistatic specular meteor radar (MSMR) winds collected in early November 2018, during the SIMONe–2018 (Spread-spectrum Interferometric Multi-static meteor radar Observing Network) campaign. These ground-based measurements are supported by temperature and neutral density profiles from TIMED/SABER (Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics/Sounding of the Atmosphere using Broadband Emission Radiometry) satellite in orbits near Kühlungsborn, northern Germany (54.1∘ N, 11.8∘ E). The scientific goals here include the characterization of gravity waves and their interaction with the mean flow in the mesosphere and lower thermosphere and their relationship to dynamical conditions in the lower and upper atmosphere. We have obtained intrinsic parameters of small- and large-scale gravity waves and characterized their impact in the mesosphere via momentum flux (FM) and momentum flux divergence (FD) estimations. We have verified that a small percentage of the detected wave events is responsible for most of FM measured during the campaign from oscillations seen in the airglow brightness and MSMR winds taken over 45 h during four nights of clear-sky observations. From the analysis of small-scale gravity waves (λh < 725 km) seen in airglow images, we have found FM ranging from 0.04–24.74 m2 s−2 (1.62 ± 2.70 m2 s−2 on average). However, small-scale waves with FM > 3 m2 s−2 (11 % of the events) transport 50 % of the total measured FM. Likewise, wave events of FM > 10 m2 s−2 (2 % of the events) transport 20 % of the total. The examination of large-scale waves (λh > 725 km) seen simultaneously in airglow keograms and MSMR winds revealed amplitudes > 35 %, which translates into FM = 21.2–29.6 m2 s−2. In terms of gravity-wave–mean-flow interactions, these large FM waves could cause decelerations of FD = 22–41 m s−1 d−1 (small-scale waves) and FD = 38–43 m s−1 d−1 (large-scale waves) if breaking or dissipating within short distances in the mesosphere and lower thermosphere region.


Sign in / Sign up

Export Citation Format

Share Document