Multi-focus image fusion based on improved spectral graph wavelet transform

2015 ◽  
Author(s):  
Xiang Yan ◽  
Hanlin Qin ◽  
Zhimin Chen ◽  
Huixin Zhou ◽  
Jia Li ◽  
...  
2014 ◽  
Vol 14 (2) ◽  
pp. 102-108 ◽  
Author(s):  
Yong Yang ◽  
Shuying Huang ◽  
Junfeng Gao ◽  
Zhongsheng Qian

Abstract In this paper, by considering the main objective of multi-focus image fusion and the physical meaning of wavelet coefficients, a discrete wavelet transform (DWT) based fusion technique with a novel coefficients selection algorithm is presented. After the source images are decomposed by DWT, two different window-based fusion rules are separately employed to combine the low frequency and high frequency coefficients. In the method, the coefficients in the low frequency domain with maximum sharpness focus measure are selected as coefficients of the fused image, and a maximum neighboring energy based fusion scheme is proposed to select high frequency sub-bands coefficients. In order to guarantee the homogeneity of the resultant fused image, a consistency verification procedure is applied to the combined coefficients. The performance assessment of the proposed method was conducted in both synthetic and real multi-focus images. Experimental results demonstrate that the proposed method can achieve better visual quality and objective evaluation indexes than several existing fusion methods, thus being an effective multi-focus image fusion method.


2011 ◽  
Vol 145 ◽  
pp. 119-123
Author(s):  
Ko Chin Chang

For general image capture device, it is difficult to obtain an image with every object in focus. To solve the fusion issue of multiple same view point images with different focal settings, a novel image fusion algorithm based on local energy pattern (LGP) is proposed in this paper. Firstly, each focus images is decomposed using discrete wavelet transform (DWT) separately. Secondly, to calculate LGP with the corresponding pixel and its surrounding pixels, then use LGP to compute the new coefficient of the pixel from each transformed images with our proposed weighted fusing rules. The rules use different operations in low-bands coefficients and high-bands coefficients. Finally, the generated image is reconstructed from the new subband coefficients. Moreover, the reconstructed image can represent more detailed for the obtained scene. Experimental results demonstrate that our scheme performs better than the traditional discrete cosine transform (DCT) and discrete wavelet transform (DWT) method in both visual perception and quantitative analysis.


2015 ◽  
Vol 32 (9) ◽  
pp. 1643 ◽  
Author(s):  
Xiang Yan ◽  
Hanlin Qin ◽  
Jia Li ◽  
Huixin Zhou ◽  
Jing-guo Zong

Sign in / Sign up

Export Citation Format

Share Document