Transition from Dyakonov and Dyakonov-Tamm surface waves to surface-plasmon-polariton waves induced by temperature

Author(s):  
Tom G. Mackay ◽  
Francesco Chiadini ◽  
Vincenzo Fiumara ◽  
Antonio Scaglione ◽  
Akhlesh Lakhtakia
Materials ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3147 ◽  
Author(s):  
Zigmas Balevicius ◽  
Algirdas Baskys

The total internal reflection ellipsometry (TIRE) method was used for the excitation and study of the sensitivity features of surface plasmon polariton (SPP) and Bloch surface waves (BSWs) resonances. For the BSWs generation distributed Bragg gratings were formed on the tops of the substrates (BK7 glass substrate), which had six bilayers of ~120 nm SiO2 and ~40 nm TiO2 and 40 nm of TiO2 on the top. The SPP sample consisted of the BK7 glass prism and a gold layer (45 nm). Numerical calculations of the optical dispersions and the experimental TIRE data have shown that SPP resonance overtake the BSWs in wavelength scanning by a factor of about 17. However, for the ellipsometric parameters Ψ and Δ in the vicinity of excitations, the BSW sensitivity is comparable with SPP. The obtained resolutions were Δ S P P = 7.14 × 10 − 6 R I U , Ψ S P P = 1.7 × 10 − 5 R I U for the SPP and Δ B S W = 8.7 × 10 − 6 R I U , Ψ B S W = 2.7 × 10 − 5 R I U for the BSW. The capabilities of both surface excitations are discussed from the sensitivity point of view in the design of these advanced biosensors.


2017 ◽  
Vol 19 (8) ◽  
pp. 085002 ◽  
Author(s):  
Francesco Chiadini ◽  
Vincenzo Fiumara ◽  
Tom G Mackay ◽  
Antonio Scaglione ◽  
Akhlesh Lakhtakia

Nanophotonics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 3965-3975 ◽  
Author(s):  
Dmitry Yu. Fedyanin ◽  
Alexey V. Krasavin ◽  
Aleksey V. Arsenin ◽  
Anatoly V. Zayats

AbstractPlasmonics offers a unique opportunity to break the diffraction limit of light and bring photonic devices to the nanoscale. As the most prominent example, an integrated nanolaser is a key to truly nanoscale photonic circuits required for optical communication, sensing applications and high-density data storage. Here, we develop a concept of an electrically driven subwavelength surface-plasmon-polariton nanolaser, which is based on a novel amplification scheme, with all linear dimensions smaller than the operational free-space wavelength λ and a mode volume of under λ3/30. The proposed pumping approach is based on a double-heterostructure tunneling Schottky barrier diode and gives the possibility to reduce the physical size of the device and ensure in-plane emission so that the nanolaser output can be naturally coupled to a plasmonic or nanophotonic waveguide circuitry. With the high energy efficiency (8% at 300 K and 37% at 150 K), the output power of up to 100 μW and the ability to operate at room temperature, the proposed surface plasmon polariton nanolaser opens up new avenues in diverse application areas, ranging from ultrawideband optical communication on a chip to low-power nonlinear photonics, coherent nanospectroscopy, and single-molecule biosensing.


Nanophotonics ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 975-982
Author(s):  
Huanhuan Su ◽  
Shan Wu ◽  
Yuhan Yang ◽  
Qing Leng ◽  
Lei Huang ◽  
...  

AbstractPlasmonic nanostructures have garnered tremendous interest in enhanced light–matter interaction because of their unique capability of extreme field confinement in nanoscale, especially beneficial for boosting the photoluminescence (PL) signals of weak light–matter interaction materials such as transition metal dichalcogenides atomic crystals. Here we report the surface plasmon polariton (SPP)-assisted PL enhancement of MoS2 monolayer via a suspended periodic metallic (SPM) structure. Without involving metallic nanoparticle–based plasmonic geometries, the SPM structure can enable more than two orders of magnitude PL enhancement. Systematic analysis unravels the underlying physics of the pronounced enhancement to two primary plasmonic effects: concentrated local field of SPP enabled excitation rate increment (45.2) as well as the quantum yield amplification (5.4 times) by the SPM nanostructure, overwhelming most of the nanoparticle-based geometries reported thus far. Our results provide a powerful way to boost two-dimensional exciton emission by plasmonic effects which may shed light on the on-chip photonic integration of 2D materials.


Sign in / Sign up

Export Citation Format

Share Document