scholarly journals Optical Dispersions of Bloch Surface Waves and Surface Plasmon Polaritons: Towards Advanced Biosensors

Materials ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3147 ◽  
Author(s):  
Zigmas Balevicius ◽  
Algirdas Baskys

The total internal reflection ellipsometry (TIRE) method was used for the excitation and study of the sensitivity features of surface plasmon polariton (SPP) and Bloch surface waves (BSWs) resonances. For the BSWs generation distributed Bragg gratings were formed on the tops of the substrates (BK7 glass substrate), which had six bilayers of ~120 nm SiO2 and ~40 nm TiO2 and 40 nm of TiO2 on the top. The SPP sample consisted of the BK7 glass prism and a gold layer (45 nm). Numerical calculations of the optical dispersions and the experimental TIRE data have shown that SPP resonance overtake the BSWs in wavelength scanning by a factor of about 17. However, for the ellipsometric parameters Ψ and Δ in the vicinity of excitations, the BSW sensitivity is comparable with SPP. The obtained resolutions were Δ S P P = 7.14 × 10 − 6 R I U , Ψ S P P = 1.7 × 10 − 5 R I U for the SPP and Δ B S W = 8.7 × 10 − 6 R I U , Ψ B S W = 2.7 × 10 − 5 R I U for the BSW. The capabilities of both surface excitations are discussed from the sensitivity point of view in the design of these advanced biosensors.

2012 ◽  
Vol 190 ◽  
pp. 369-372 ◽  
Author(s):  
N.E. Khokhlov ◽  
V.I. Belotelov ◽  
A.N. Kalish ◽  
A.K. Zvezdin

t is shown that the inverse Faraday effect appears in the case of surface plasmon polariton propagation near a metal-paramagnetic interface. The inverse Faraday effect in nanostructured periodically perforated metaldielectric films increases because of the excitation of surface plasmon polaritons. In this case, a stationary magnetic field is amplified by more than an order of magnitude compared to the case of a smooth paramagnetic film. The distribution of an electromagnetic field is sensitive to the wavelength and the angle of incidence of light, which allows one to efficiently control the local magnetization arising due to the inverse Faraday effect.


2003 ◽  
Vol 797 ◽  
Author(s):  
Victor Coello ◽  
Thomas Søndergaard ◽  
Sergey I. Bozhevolnyi

ABSTRACTWe model the operation of a micro-optical interferometer for surface plasmon polaritons (SPPs) that comprises an SPP beam-splitter formed by equivalent scatterers lined up and equally spaced. The numerical calculations are carried out by using a vector dipolar model for multiple SPP scattering. The SPP beam-splitter is simulated for different angles of the incident SPP beam, radii of the particles, and inter-particle distances in order to find a suitable configuration for realization of a 3dB SPP beam-splitter. The results obtained are in good agreement with experimental data available in the literature. The feasibility of fabricating an interferometer is thereby corroborated and the calculated intensity maps are found rather similar to those experimentally reported.


2015 ◽  
Vol 15 (10) ◽  
pp. 7711-7716 ◽  
Author(s):  
Dong Hun Lee ◽  
Myung-Hyun Lee

We propose a gapped surface plasmon polariton waveguide (G-SPPW) device based on a liquid crystal (LC) at a wavelength of 1.55 μm. The G-SPPW device is composed of an input 2.0-μm-wide and 5.0-μm-long insulator-metal-insulator waveguide (IMI-W), an 8-μm-long gap, and an output 2.0-μm-wide and 25.0-μm-long IMI-W. The LC is used for the gap and the 5.15-μm-thick upper and lower dielectric layers. The input surface plasmon polaritons (SPPs) propagate and jump over the gap in the G-SPPW with a coupling loss of less than ∼0.68 dB. The propagation and coupling losses of the 38-μm-long G-SPPW device are varied in the range of ∼0.5268 dB to ∼2.6716 dB and ∼0.1446 dB to ∼0.6784 dB, respectively, with LC tilt angles (1, 2) = 0° ∼ 90° at a fixed 90° twist angle. The normalized transmission of the G-SPPW device is also varied in the range from −3.351 dB to −0.6714 dB with 1, 2 = 0° ∼ 90° at a fixed 90° twist angle. The output SPP characteristics of the G-SPPW device can be properly controlled by the orientation of the LC molecules. The proposed G-SPPW device shows potential for new active plasmonic device applications.


Author(s):  
Tom G. Mackay ◽  
Francesco Chiadini ◽  
Vincenzo Fiumara ◽  
Antonio Scaglione ◽  
Akhlesh Lakhtakia

2016 ◽  
Vol 4 (42) ◽  
pp. 10111-10119 ◽  
Author(s):  
Ankur K. Dalsania ◽  
Jesse Kohl ◽  
Cindy E. Kumah ◽  
Zeqing Shen ◽  
Christopher E. Petoukhoff ◽  
...  

This work presents an experimental investigation of enhancing surface plasmon polariton coupling to semiconductor emission by tailoring metal film thickness.


2019 ◽  
Vol 7 (12) ◽  
pp. 7015-7024 ◽  
Author(s):  
Wonmi Ahn ◽  
Igor Vurgaftman ◽  
Jeremy J. Pietron ◽  
Pehr E. Pehrsson ◽  
Blake S. Simpkins

Hot carrier generation by surface plasmon polariton was demonstrated in a metal/semiconductor heterofilm and a bare metal film for energy-tunable photocatalysis.


2020 ◽  
Vol 41 (2) ◽  
pp. 113-116
Author(s):  
Lovepreet Kaur ◽  
Sanjeev Dewra

AbstractThis article presents the architecture of optical microring resonator based on surface plasmon polaritons using different profile materials like silicon (Si), silver (Ag) and gold (Au). It is observed that 3.53e-005 w/m, 6.92e-005 w/m, 7.05e-005 w/m received optical powers are achieved in silicon (Si), silver (Ag) and gold (Au) profile materials, respectively, of optical microring resonator at 0.1 w/m minimum input transmission power for 1.55 μm input transmission wavelength. The result shows that the silicon profile is best for designing the optical microring resonator in terms of received optical power.


Sign in / Sign up

Export Citation Format

Share Document