Nonuniform distribution of phase noise in distributed acoustic sensing based on phase-sensitive OTDR

Author(s):  
Zhijie Yu ◽  
Yang Lu ◽  
Zhou Meng
2021 ◽  
Author(s):  
Miguel Soriano-Amat ◽  
Hugo F. Martins ◽  
Luis Costa ◽  
Sonia Martin-Lopez ◽  
Miguel Gonzalez-Herraez ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Yonas Muanenda

Distributed acoustic sensing (DAS) using coherent Rayleigh backscattering in an optical fiber has become a ubiquitous technique for monitoring multiple dynamic events in real time. It has continued to constitute a steadily increasing share of the fiber-optic sensor market, thanks to its interesting applications in many safety, security, and integrity monitoring systems. In this contribution, an overview of the recent advances of research in DAS based on phase-sensitive optical time domain reflectometry (ϕ-OTDR) is provided. Some advanced techniques used to enhance the performance of ϕ-OTDR sensors for measuring backscattering intensity changes through reduction of measurement noise are presented, in addition to methods used to increase the dynamic measurement capacity of ϕ-OTDR schemes beyond conventional limits set by the sensing distance. Recent ϕ-OTDR configurations which significantly enhance the measurement spatial resolution, including those which decouple it from the probing pulse width, are also discussed. Finally, a review of recent advances in more precise quantitative measurement of an external impact based on frequency shift and phase demodulation methods using simple direct detection ϕ-OTDR schemes is given.


Sensors ◽  
2019 ◽  
Vol 19 (20) ◽  
pp. 4368 ◽  
Author(s):  
María R. Fernández-Ruiz ◽  
Luis Costa ◽  
Hugo F. Martins

In 2016, a novel interrogation technique for phase-sensitive (Φ)OTDR was mathematically formalized and experimentally demonstrated, based on the use of a chirped-pulse as a probe, in an otherwise direct-detection-based standard setup: chirped-pulse (CP-)ΦOTDR. Despite its short lifetime, this methodology has now become a reference for distributed acoustic sensing (DAS) due to its valuable advantages with respect to conventional (i.e., coherent-detection or frequency sweeping-based) interrogation strategies. Presenting intrinsic immunity to fading points and using direct detection, CP-ΦOTDR presents reliable high sensitivity measurements while keeping the cost and complexity of the setup bounded. Numerous technique analyses and contributions to study/improve its performance have been recently published, leading to a solid, highly competitive and extraordinarily simple method for distributed fibre sensing. The interesting sensing features achieved in these last years CP-ΦOTDR have motivated the use of this technology in diverse applications, such as seismology or civil engineering (monitoring of pipelines, train rails, etc.). Besides, new areas of application of this distributed sensor have been explored, based on distributed chemical (refractive index) and temperature-based transducer sensors. In this review, the principle of operation of CP-ΦOTDR is revisited, highlighting the particular performance characteristics of the technique and offering a comparison with alternative distributed sensing methods (with focus on coherent-detection-based ΦOTDR). The sensor is also characterized for operation in up to 100 km with a low cost-setup, showing performances close to the attainable limits for a given set of signal parameters [≈tens-hundreds of pe/sqrt(Hz)]. The areas of application of this sensing technology employed so far are briefly outlined in order to frame the technology.


2019 ◽  
Vol 6 (4) ◽  
pp. 6117-6124 ◽  
Author(s):  
Zinan Wang ◽  
Bin Zhang ◽  
Ji Xiong ◽  
Yun Fu ◽  
Shengtao Lin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document