Near-field THz nanoscopy at novel accelerator-based photon sources (Conference Presentation)

Author(s):  
Lukas M. Eng ◽  
Frederik Kuschewski ◽  
Jonathan Döring ◽  
Lukas Wehmeier ◽  
Thales de Oliveira ◽  
...  
Keyword(s):  
Proceedings ◽  
2019 ◽  
Vol 26 (1) ◽  
pp. 1
Author(s):  
Lukas M. Eng ◽  
Frederik Kuschewski ◽  
Jonathan Döring ◽  
Lukas Wehmeier ◽  
Tobias Nörenberg ◽  
...  
Keyword(s):  

This talk advertises scattering-type scanning near-field. [...]


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Ryan J. Gelly ◽  
Dylan Renaud ◽  
Xing Liao ◽  
Benjamin Pingault ◽  
Stefan Bogdanovic ◽  
...  

AbstractIn WSe2 monolayers, strain has been used to control the energy of excitons, induce funneling, and realize single-photon sources. Here, we developed a technique for probing the dynamics of free excitons in nanoscale strain landscapes in such monolayers. A nanosculpted tapered optical fiber is used to simultaneously generate strain and probe the near-field optical response of WSe2 monolayers at 5 K. When the monolayer is pushed by the fiber, its lowest energy states shift by as much as 390 meV (>20% of the bandgap of a WSe2 monolayer). Polarization and lifetime measurements of these red-shifting peaks indicate they originate from dark excitons. We conclude free dark excitons are funneled to high-strain regions during their long lifetime and are the principal participants in drift and diffusion at cryogenic temperatures. This insight supports proposals on the origin of single-photon sources in WSe2 and demonstrates a route towards exciton traps for exciton condensation.


Author(s):  
E. Betzig ◽  
A. Harootunian ◽  
M. Isaacson ◽  
A. Lewis

In general, conventional methods of optical imaging are limited in spatial resolution by either the wavelength of the radiation used or by the aberrations of the optical elements. This is true whether one uses a scanning probe or a fixed beam method. The reason for the wavelength limit of resolution is due to the far field methods of producing or detecting the radiation. If one resorts to restricting our probes to the near field optical region, then the possibility exists of obtaining spatial resolutions more than an order of magnitude smaller than the optical wavelength of the radiation used. In this paper, we will describe the principles underlying such "near field" imaging and present some preliminary results from a near field scanning optical microscope (NS0M) that uses visible radiation and is capable of resolutions comparable to an SEM. The advantage of such a technique is the possibility of completely nondestructive imaging in air at spatial resolutions of about 50nm.


2007 ◽  
Author(s):  
Stuart Gregson ◽  
John McCormick ◽  
Clive Parini

Author(s):  
Daqing Cui ◽  
Ylva Ranebo ◽  
Jeanett Low ◽  
Vincenzo Rondinella ◽  
Jinshan Pan ◽  
...  
Keyword(s):  

Author(s):  
Mondher Dhaouadi ◽  
M. Mabrouk ◽  
T. Vuong ◽  
A. Ghazel

2011 ◽  
Vol E94-B (9) ◽  
pp. 2646-2649
Author(s):  
Bum-Soo KWON ◽  
Tae-Jin JUNG ◽  
Kyun-Kyung LEE

Sign in / Sign up

Export Citation Format

Share Document