scholarly journals Small target detection for search and rescue operations using distributed deep learning and synthetic data generation

Author(s):  
Kyongsik Yun ◽  
Luan Nguyen ◽  
Tuan Nguyen ◽  
Doyoung Kim ◽  
Sarah Eldin ◽  
...  
2021 ◽  
Vol 11 (24) ◽  
pp. 11938
Author(s):  
Denis Zherdev ◽  
Larisa Zherdeva ◽  
Sergey Agapov ◽  
Anton Sapozhnikov ◽  
Artem Nikonorov ◽  
...  

Human poses and the behaviour estimation for different activities in (virtual reality/augmented reality) VR/AR could have numerous beneficial applications. Human fall monitoring is especially important for elderly people and for non-typical activities with VR/AR applications. There are a lot of different approaches to improving the fidelity of fall monitoring systems through the use of novel sensors and deep learning architectures; however, there is still a lack of detail and diverse datasets for training deep learning fall detectors using monocular images. The issues with synthetic data generation based on digital human simulation were implemented and examined using the Unreal Engine. The proposed pipeline provides automatic “playback” of various scenarios for digital human behaviour simulation, and the result of a proposed modular pipeline for synthetic data generation of digital human interaction with the 3D environments is demonstrated in this paper. We used the generated synthetic data to train the Mask R-CNN-based segmentation of the falling person interaction area. It is shown that, by training the model with simulation data, it is possible to recognize a falling person with an accuracy of 97.6% and classify the type of person’s interaction impact. The proposed approach also allows for covering a variety of scenarios that can have a positive effect at a deep learning training stage in other human action estimation tasks in an VR/AR environment.


Author(s):  
S. Fedorova ◽  
A. Tono ◽  
M. S. Nigam ◽  
J. Zhang ◽  
A. Ahmadnia ◽  
...  

Abstract. With the growing interest in deep learning algorithms and computational design in the architectural field, the need for large, accessible and diverse architectural datasets increases. Due to the complexity of such 3D datasets, the most widespread techniques of 3D scanning and manual building modeling are very time-consuming, which does not allow to have a sufficiently large open-source dataset. We decided to tackle this problem by constructing a field-specific synthetic data generation pipeline that generates an arbitrary amount of 3D data along with the associated 2D and 3D annotations. The variety of annotations, the flexibility to customize the generated building and dataset parameters make this framework suitable for multiple deep learning tasks, including geometric deep learning that requires direct 3D supervision. Creating our building data generation pipeline we leveraged the experts’ architectural knowledge in order to construct a framework that would be modular, extendable and would provide a sufficient amount of class-balanced data samples. Moreover, we purposefully involve the researcher in the dataset customization allowing the introduction of additional building components, material textures, building classes, number and type of annotations as well as the number of views per 3D model sample. In this way, the framework would satisfy different research requirements and would be adaptable to a large variety of tasks. All code and data is made publicly available: https://cdinstitute.github.io/Building-Dataset-Generator/.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Junhwan Ryu ◽  
Sungho Kim

This paper proposes the end-to-end detection of a deep network for far infrared small target detection. The problem of detecting small targets has been a subject of research for decades and has been applied mainly in the field of surveillance. Traditional methods focus on filter design for each environment, and several steps are needed to obtain the final detection result. Most of them work well in a given environment but are vulnerable to severe clutter or environmental changes. This paper proposes a novel deep learning-based far infrared small target detection method and a heterogeneous data fusion method to solve the lack of semantic information due to the small target size. Heterogeneous data consists of radiometric temperature data (14-bit) and gray scale data (8-bit), which includes the physical meaning of the target, and compares the effects of the normalization method to fuse heterogeneous data. Experiments were conducted using an infrared small target dataset built directly on the cloud backgrounds. The experimental results showed that there is a significant difference in performance according to the various fusion methods and normalization methods, and the proposed detector showed approximately 20% improvement in average precision (AP) compared to the baseline constant false alarm rate (CFAR) detector.


Author(s):  
Elizabeth A. Olson ◽  
Corina Barbalata ◽  
Junming Zhang ◽  
Katherine A. Skinner ◽  
Matthew Johnson-Roberson

Sign in / Sign up

Export Citation Format

Share Document