Plasma density tapering for phase velocity control of nonlinear laser-driven plasma wakefields (Conference Presentation)

Author(s):  
Carl B. Schroeder
2007 ◽  
Vol 25 (2) ◽  
pp. 259-265 ◽  
Author(s):  
Y-J. SHI

In this paper, we present a novel kind of electron acceleration mechanism when the trapped electrons are in a wake of plasma with adiabatically attenuating density. Accompanied with the increase of phase velocity βp of the wake owing to the plasma density attenuating adiabatically, the trapped electrons synchronized with the wake will get an additional acceleration besides the synchrotron oscillating acceleration just like in an accelerating elevator. The additional energy gain of the trapped electrons is determined by the value of the relativistic factor γpf = ω/ωp(zf) at the exit zf of the plasma wake. Moreover, the acceleration length is not limited by the dephasing deterministically any more, instead, it is mainly determined by the survivability of the wake. In other words, it is dependent upon the wake instability and its involving energy from driving source.


2018 ◽  
Vol 36 (2) ◽  
pp. 195-202
Author(s):  
M. Kaur ◽  
D. N. Gupta

AbstractEnergy gain of electron beams in bubble regime of the laser wakefield accelerator can be optimized by improving the acceleration length, radial accelerating and focusing force, number of monoenergetic electrons trapped inside the bubble, and increasing dephasing length. In order to enlarge the dephasing length, the phase velocity of the plasma wave can be increased by optimizing the plasma density profile. We report the estimation of dephasing length using plasma density distribution with the flat and linear-upward profile using two-dimensional particle-in-cell simulations. The size of wakefield bubble depends on the plasma density. With a positive plasma density gradient, the size of bubble decreases. The front and trail part of wake bubble will have different phase velocity in plasma density gradient region. After density transition in constant density region, the bubble elongates and the velocity of the back part of the bubble increases so that the accelerated electron phase synchronizes with the phase of the plasma wave. In a result, the electron acceleration length enhances to improve the beam quality.


Sign in / Sign up

Export Citation Format

Share Document