wake instability
Recently Published Documents


TOTAL DOCUMENTS

58
(FIVE YEARS 3)

H-INDEX

19
(FIVE YEARS 0)

2022 ◽  
Author(s):  
Fei Li ◽  
Meelan M. Choudhari ◽  
Pedro Paredes


2021 ◽  
Author(s):  
Eric Yang ◽  
Pierre E. Sullivan

Abstract The response of a separated boundary layer to synthetic jet flow control at the global wake instability (F+ ≈ 𝒪(1)) and the shear-layer instability (F+ ≈ 𝒪(10)) measured by particle image velocimetry are presented. The visualization shows that in each of the control cases, coherent vorticity develops and breaks down into a turbulent wake. When the jets are actuated by burst-modulation at the wake instability frequency, they induce regular formation and detachment of large-scale vorticity to form a wide turbulent wake. Excitation at the shear-layer instability frequency, on the other hand, produces a train of alternating velocity fluctuations in the boundary layer which dissipate to a narrower wake. Proper orthogonal decomposition of the velocity fields show that the physical extent of the jet-induced coherent structures is decreased with increasing addition of momentum for both excitation frequencies.



Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4886 ◽  
Author(s):  
Yang Yang ◽  
Xiao Liu ◽  
Zhihao Zhang

The current work is focused on investigating the potential of data-driven post-processing techniques, including proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD) for flame dynamics. Large-eddy simulation (LES) of a V-gutter premixed flame was performed with two Reynolds numbers. The flame transfer function (FTF) was calculated. The POD and DMD were used for the analysis of the flame structures, wake shedding frequency, etc. The results acquired by different methods were also compared. The FTF results indicate that the flames have proportional, inertial, and delay components. The POD method could capture the shedding wake motion and shear layer motion. The excited DMD modes corresponded to the shear layer flames’ swing and convect motions in certain directions. Both POD and DMD could help to identify the wake shedding frequency. However, this large-scale flame oscillation is not presented in the FTF results. The negative growth rates of the decomposed mode confirm that the shear layer stabilized flame was more stable than the flame possessing a wake instability. The corresponding combustor design could be guided by the above results.



2020 ◽  
Vol 8 (5) ◽  
pp. 365
Author(s):  
Li Zou ◽  
Kun Wang ◽  
Yichen Jiang ◽  
Aimin Wang ◽  
Tiezhi Sun

Owing to the rapid development of the offshore wind power technology and increasing capacity of wind turbines, vertical-axis wind turbines (VAWTs) have experienced a great development. Nevertheless, the VAWT wake effect, which affects the power generation efficiency and rotor fatigue life, has not been thoroughly understood. In this study, the mid-span wake measurements on a VAWT in six different configurations were conducted. This study aimed to investigate the effect of solidity on near wake instability of vertical-axis wind turbine. By using the wavelet analysis method to analyse the measured velocity (or pressure) time series signals on a multi-scale and with multi-resolution, the dynamic characteristics of the coherent vortex structures in the wake evolution process were determined. The results show that with increasing solidity, the VAWT wake develops into a bluff body wake mode. In addition, a characteristic frequency that is lower than the low-frequency large-scale vortex shedding frequency occur. The wavelet transform was used to decompose and reconstruct the measured data, and the relationship between the low-frequency large-scale vortex shedding and lower frequency pulsation was established. The results provide important data for numerical modelling and new insights into the physical mechanism of the VAWT wake evolution into a bluff body wake.



2018 ◽  
Vol 32 (8-9) ◽  
pp. 379-394 ◽  
Author(s):  
Pengxin Liu ◽  
Qin Li ◽  
Zhangfeng Huang ◽  
Hanxin Zhang


2018 ◽  
Vol 855 ◽  
pp. 804-838 ◽  
Author(s):  
B. Liu ◽  
R. K. Jaiman

In this work, the coupled dynamics of the gap flow and the vortex-induced vibration (VIV) of a side-by-side (SBS) arrangement of two circular cylinders is numerically investigated at Reynolds numbers $100\leqslant Re\leqslant 500$ . The influence of VIV is incorporated by allowing one of the cylinders to vibrate freely in the transverse direction, which is termed as a vibrating side-by-side (VSBS) arrangement. A comparative three-dimensional study is performed between the stationary side-by-side (SSBS) and the VSBS arrangements to examine the characteristics of the complex coupling between the VIV and the gap flow. The results are also contrasted against the isolated configurations without any proximity and gap-flow interference. Of particular interest is to establish a relationship between the VIV, the gap flow and the near-wake instability behind bluff bodies. We find that the kinematics of the VIV regulates the streamwise vorticity concentration, which accompanies a recovery of the two-dimensional hydrodynamic response at the peak lock-in. Moreover, the near-wake instability may develop around an indeterminant two-dimensional streamline saddle point along the interfaces of a pair of imbalanced counter-signed vorticity clusters. The interaction between the imbalanced vorticity clusters and the gap-flow momentum are closely interlinked with the prominence of streamwise vortical structures. In both SSBS and VSBS arrangements, the flip-flopping frequency is significantly low for the three-dimensional flow, except at the VIV lock-in for the VSBS arrangement. While an early onset of VIV lock-in is observed for the vibrating configuration, a quasi-stable deflected gap-flow regime with stably deflected gap flow is found at the peak lock-in. The increase of the gap-flow proximity interference promotes the energy transfer and stabilizes the VIV lock-in. Finally, we employ the dynamic mode decomposition procedure to characterize the space–time evolution of the vortex wake system behind the cylinders.



AIAA Journal ◽  
2018 ◽  
Vol 56 (8) ◽  
pp. 3008-3023
Author(s):  
T. Nadesan ◽  
D. Estruch-Samper


2018 ◽  
Vol 845 ◽  
pp. 520-559 ◽  
Author(s):  
M. Felli ◽  
M. Falchi

In the present study the wake flow past an isolated propeller operating in oblique flow conditions is investigated experimentally. In particular, the investigation concerns a systematic topological comparison of the wake behaviour in axisymmetric and in oblique inflow conditions, for three inclination angles, and is focused on an analysis of the underlying mechanisms of wake evolution and instability. To this end, the experiment has been designed to investigate the dynamics of propeller vortical structures over a wide spatial extent covering the wake region from the propeller disk up to 4.5 diameters in the streamwise direction. Detailed flow measurements have been undertaken by particle image velocimetry (PIV), using a multicamera configuration with three cameras arranged side by side. This allowed simultaneous acquisition of a large flow extent at a spatial resolution adequate to resolve the smallest vortical structures involved in the process of propeller wake instability. The analysis has been based on both phase-locked averaged and instantaneous flow fields. The study extends the knowledge on the subject of propeller wake dynamics, highlighting the major hydrodynamic effects that non-axisymmetric propeller operating conditions exert on the mechanisms of wake evolution, instability and breakdown, such as asymmetric destabilization of the tip vortices on the leeward and windward sides of the wake, and the interference between the tip and the junction vortices, as well as the cause–effect relation between the breakdown of the blade trailing wake and the instability of the tip and hub vortices.



2018 ◽  
Vol 842 ◽  
pp. 102-127 ◽  
Author(s):  
Hongyi Jiang ◽  
Liang Cheng ◽  
Hongwei An

Three-dimensional (3-D) wake transition for flow past a square cylinder aligned with sides perpendicular and parallel to the approaching flow is investigated using direct numerical simulation. The secondary wake instability, namely a Mode A instability, occurs at a Reynolds number ($Re$) of 165.7. A gradual wake transition from Mode A* (i.e. Mode A with vortex dislocations) to Mode B is observed over a range of $Re$ from 185 to 210, within which the probability of occurrence of vortex dislocations decreases monotonically with increasing $Re$. The characteristics of the Strouhal–Reynolds number relationship are analysed. At the onset of Mode A*, a sudden drop of the 3-D Strouhal number from its two-dimensional counterpart is observed, which is due to the subcritical nature of the Mode A* instability. A continuous 3-D Strouhal–Reynolds number curve is observed over the mode swapping regime, since Mode A* and Mode B have extremely close vortex shedding frequencies and therefore only a single merged peak is observed in the frequency spectrum. The existence of hysteresis for the Mode A and Mode B wake instabilities is examined. The unconfined Mode A and Mode B wake instabilities are hysteretic and non-hysteretic, respectively. However, a spanwise confined Mode A could be non-hysteretic. It is proposed that the existence of hysteresis at a wake instability can be identified by examining the sudden/gradual variation of the 3-D flow properties at the onset of the wake instability, with sudden and gradual variations corresponding to hysteretic (subcritical) and non-hysteretic (supercritical) flows, respectively.



Sign in / Sign up

Export Citation Format

Share Document