wave phase velocity
Recently Published Documents


TOTAL DOCUMENTS

168
(FIVE YEARS 33)

H-INDEX

27
(FIVE YEARS 3)

Geophysics ◽  
2021 ◽  
pp. 1-74
Author(s):  
Bowen Li ◽  
Alexey Stovas

Characterizing the kinematics of seismic waves in elastic orthorhombic media involves nine independent parameters. All wave modes, P-, S1-, and S2-waves, are intrinsically coupled. Since the P-wave propagation in orthorhombic media is weakly dependent on the three S-wave velocity parameters, they are set to zero under the acoustic assumption. The number of parameters required for the corresponding acoustic wave equation is thus reduced from nine to six, which is very practical for the inversion algorithm. However, the acoustic wavefields generated by the finite-difference scheme suffer from two types of S-wave artifacts, which may result in noticeable numerical dispersion and even instability issues. Avoiding such artifacts requires a class of spectral methods based on the low-rank decomposition. To implement a six-parameter pure P-wave approximation in orthorhombic media, we develop a novel phase velocity approximation approach from the perspective of decoupling P- and S-waves. In the exact P-wave phase velocity expression, we find that the two algebraic expressions related to the S1- and S2-wave phase velocities play a negligible role. After replacing these two algebraic expressions with the designed constant and variable respectively, the exact P-wave phase velocity expression is greatly simplified and naturally decoupled from the characteristic equation. Similarly, the number of required parameters is reduced from nine to six. We also derive an approximate S-wave phase velocity equation, which supports the coupled S1- and S2-waves and involves nine independent parameters. Error analyses based on several orthorhombic models confirm the reasonable and stable accuracy performance of the proposed phase velocity approximation. We further derive the approximate dispersion relations for the P-wave and the S-wave system in orthorhombic media. Numerical experiments demonstrate that the corresponding P- and S-wavefields are free of artifacts and exhibit good accuracy and stability.


2021 ◽  
Vol 14 (1) ◽  
pp. 110
Author(s):  
Xiaoming Xu ◽  
Dazhou Zhang ◽  
Xiang Huang ◽  
Xiaoman Cao

The North China Craton (NCC) has experienced strong tectonic deformation and lithospheric thinning since the Cenozoic. To better constrain the geodynamic processes and mechanisms of the lithospheric deformation, we used a linear damped least squares method to invert simultaneously Rayleigh wave phase velocity and azimuthal anisotropy at periods of 10–80 s with teleseismic data recorded by 388 permanent stations in the NCC and its adjacent areas. The results reveal that the anomalies of Rayleigh wave phase velocity and azimuthal anisotropy are in good agreement with the tectonic domains in the study area. Low-phase velocities appear in the rift grabens and sedimentary basins at short periods. A rotation pattern of the fast axis direction of the Rayleigh wave together with a distinct low-velocity anomaly occurs around the Datong volcano. A NW–SE trending azimuthal anisotropy and a low-velocity anomaly at periods of 60–80 s are observed subparallel to the Zhangbo fault zone. The whole lithosphere domain of the Ordos block shows a high-phase velocity and counterclockwise rotated fast axis. The northeastern margin of the Tibetan plateau is dominated by a low-velocity and coherent NW–SE fast axis direction. We infer that the subduction of the Paleo-Pacific plate and eastward material escape of the Tibetan plateau mainly contribute to the deformation of the crust and upper mantle in the NCC.


Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2270
Author(s):  
Olha Hrytsyna ◽  
Jan Sladek ◽  
Vladimir Sladek

The non-classical linear governing equations of strain gradient piezoelectricity with micro-inertia effect are used to investigate Love wave propagation in a layered piezoelectric structure. The influence of flexoelectricity and micro-inertia effect on the phase wave velocity in a thin homogeneous flexoelectric layer deposited on a piezoelectric substrate is investigated. The dispersion relation for Love waves is obtained. The phase velocity is numerically calculated and graphically illustrated for the electric open-circuit and short-circuit conditions and for distinct material properties of the layer and substrate. The influence of direct flexoelectricity, micro-inertia effect, as well as the layer thickness on Love wave propagation is studied individually. It is found that flexoelectricity increases the Love-wave phase velocity, while the micro-inertia effect reduces its value. These effects become more significant for Love waves with shorter wavelengths and small guiding layer thicknesses.


Author(s):  
Avinash Nayak ◽  
Jonathan Ajo-Franklin ◽  

ABSTRACT The application of ambient seismic noise cross-correlation to distributed acoustic sensing (DAS) data recorded by subsurface fiber-optic cables has revolutionized our ability to obtain high-resolution seismic images of the shallow subsurface. However, passive surface-wave imaging using DAS arrays is often restricted to Rayleigh-wave imaging and 2D imaging along straight segments of DAS arrays due to the intrinsic sensitivity of DAS being limited to axial strain along the cable for the most common type of fiber. We develop the concept of estimating empirical surface waves from mixed-sensor cross-correlation of velocity noise recorded by three-component seismometers and strain-rate noise recorded by DAS arrays. Using conceptual arguments and synthetic tests, we demonstrate that these cross-correlations converge to empirical surface-wave axial strain response at the DAS arrays for virtual single step forces applied at the seismometers. Rotating the three orthogonal components of the seismometer to a tangential–radial–vertical reference frame with respect to each DAS channel permits separate analysis of Rayleigh waves and Love waves for a medium that is sufficiently close to 1D and isotropic. We also develop and validate expressions that facilitate the measurement of surface-wave phase velocity on these noise cross-correlations at far-field distances using frequency–time analysis. These expressions can also be used for DAS surface-wave records of active sources at local distances. We demonstrate the recovery of both Rayleigh waves and Love waves in noise cross-correlations derived from a dark fiber DAS array in the Sacramento basin, northern California, and nearby permanent seismic stations at frequencies ∼0.1–0.2  Hz, up to distances of ∼80  km. The phase-velocity dispersion measured on these noise cross-correlations are consistent with those measured on traditional noise cross-correlations for seismometer pairs. Our results extend the application of DAS to 3D ambient noise Rayleigh-wave and Love-wave tomography using seismometers surrounding a DAS array.


Geophysics ◽  
2021 ◽  
pp. 1-57
Author(s):  
Bowen Li ◽  
Alexey Stovas

Characterizing the kinematics of seismic waves in elastic vertical transversely isotropic (VTI) media involves four independent parameters. To reduce the complexity, the acoustic approximation for P-waves reduces the number of required parameters to three by setting the vertical S-wave velocity to zero. However, since only the SV-wave phase velocities parallel or perpendicular to the symmetry axis are indirectly set to zero, the acoustic approximation leads to coupled P-wave components and SV-wave artifacts. The new acoustic approximation suggests setting the vertical S-wave velocity as a phase angle-dependent variable so that the SV-wave phase velocity is zero at all phase angles. We find that manipulating this parameter is a valid way for P-wave approximation, but doing so inevitably leads to zero- or non-zero-valued spurious SV-wave components. Thus, we have developed a novel approach to efficiently approximate and thoroughly separate the two wave modes in VTI media. First, the exact P- and SV-wave phase velocity expressions are rewritten by introducing an auxiliary function. After confirming the insensitivity of this function, we construct a new expression for it and obtain simplified P- and SV-wave phase velocity expressions, which are three- and four-parameter, respectively. This approximation process leads to the same reasonable error for both wave modes. Accuracy analysis indicates that for the P-wave, the overall accuracy performance of our approach is comparable to that of some existing three-parameter approximations. We then derive the corresponding P- and SV-wave equations in tilted transversely isotropic (TTI) media and provide two available solutions, the hybrid finite-difference/pseudo-spectral scheme and the low-rank approach. Numerical examples illustrate the separability and high accuracy of the proposed P- and SV-wave simulation methods in TTI media.


2021 ◽  
Author(s):  
Prabhakar Kumar ◽  
Dibakar Ghosal

<p>The continent-continent collision between the Indian and Asian Plate formed a series of major faults from north to south along the Himalayan belt. Among these Himalayan Frontal Thrust (HFT) is the southernmost and youngest one and is tectonically very active. Any information on the shear wave velocity distribution across the fault is therefore very important. In this study, we have used the Wide Angle Multichannel Analysis of Surface Wave (WAMASW) to estimate the subsurface shear wave velocity profiles across HFT at Pawalgarh in Uttarakhand, India, using widely used stochastic global search Particle Swarm Optimization (PSO) and Grey wolf Optimization (GWO) algorithms. To gain confidence on the accuracy of the inversion results, we first generated an elastic synthetic seismic shot gather with ground rolls by using the forward modelling scheme of SOFI2D for a two-layer velocity depth model overlying a half-space. The generated gather was then processed in MATLAB to generate the experimental dispersion curve using the Phase shift method. We then extracted the fundamental mode for the gather and inverted it using the standard PSO and GWO algorithms and estimated 1D shear wave velocity profile. After getting acceptable results for the synthetic dataset, we then applied the PSO algorithm to generate the 1D S-wave velocity (Vs) profile across the Himalayan Frontal Thrust (HFT). In the study area, the Rayleigh wave phase velocity for the first shot varies from 444 to 743 m/s. We then obtained the 1D shear wave velocity profiles and a jump in Vs is observed across the HFT indicating variation in the sediment stiffness across the fault.</p><p><strong>Keywords: </strong>WAMASW, dispersion, Meta- Heuristic, PSO, GWO, 1D Shear wave velocity</p><p> </p>


2021 ◽  
Vol 13 (4) ◽  
pp. 614
Author(s):  
George Varlas ◽  
Eleni Marinou ◽  
Anna Gialitaki ◽  
Nikolaos Siomos ◽  
Konstantinos Tsarpalis ◽  
...  

Atmospheric-chemical coupled models usually parameterize sea-salt aerosol (SSA) emissions using whitecap fraction estimated considering only wind speed and ignoring sea state. This approach may introduce inaccuracies in SSA simulation. This study aims to assess the impact of sea state on SSA modeling, applying a new parameterization for whitecap fraction estimation based on wave age, calculated by the ratio between wave phase velocity and wind speed. To this end, the new parameterization was incorporated in the coupled Chemical Hydrological Atmospheric Ocean wave modeling System (CHAOS). CHAOS encompasses the wave model (WAM) two-way coupled through the OASIS3-MCT coupler with the Advanced Weather Research and Forecasting model coupled with Chemistry (WRF-ARW-Chem) and, thus, enabling the concurrent simulation of SSAs, wind speed and wave phase velocity. The simulation results were evaluated against in-situ and lidar measurements at 2 stations in Greece (Finokalia on 4 and 15 July 2014 and Antikythera-PANGEA on 15 September 2018). The results reveal significant differences between the parameterizations with the new one offering a more realistic representation of SSA levels in some layers of the lower atmosphere. This is attributed to the enhancement of the bubble-bursting mechanism representation with air-sea processes controlling whitecap fraction. Our findings also highlight the contribution of fresh wind-generated waves to SSA modeling.


Sign in / Sign up

Export Citation Format

Share Document