energy gain
Recently Published Documents


TOTAL DOCUMENTS

437
(FIVE YEARS 69)

H-INDEX

35
(FIVE YEARS 4)

The Auk ◽  
2022 ◽  
Author(s):  
Ana Morales ◽  
Barbara Frei ◽  
Greg W Mitchell ◽  
Camille Bégin-Marchand ◽  
Kyle H Elliott

Abstract Migration consists of a sequence of small- to large-scale flights often separated by stopovers for refueling. Tradeoffs between minimizing migration time (more flights, shorter stopovers) and maximizing energy gain (fewer flights, longer stopovers) will affect overall migration timing. For example, some individuals make long-term stopovers in high-quality habitat that maximize energy gain (e.g., molt-migration), but movement to those habitats likely costs time. We used radio telemetry and blood plasma metabolite levels to examine physiological and behavioral tradeoffs between molt-migrant (birds molting at the molt stopover; n = 59) and post-molt (birds that presumably completed their molt elsewhere; n = 19) migrant Swainson’s Thrushes (Catharus ustulatus) near Montreal, Canada. Molt-migration was a large time investment as the average stopover duration for molt-migrants was of 47 ± 9 days (~13% of the entire annual cycle), almost twice as long as previously assumed from banding records, and far longer than stopovers of post-molting individuals (7 ± 2 days). Daily mortality rate during the molt stopover was similar to the average annual daily mortality rate. Molt-migrants’ circadian rhythms closely matched light levels, whereas post-molting birds had irregular rhythms and averaged 1 hr greater activity per day than molt-migrants. Despite being less active, molt-migrants had similar refueling rates based on metabolite profiles. As compared with migrants that completed molt earlier, molt-migrants at this stopover site had slower subsequent migration rates. Thus, birds using long-term stopovers appeared to tradeoff energy (efficient refueling) for time (slower subsequent migration).


2021 ◽  
Author(s):  
Piyumali Mewanthika Jayasundara ◽  
Thisara Kaveendra Jayasinghe ◽  
Mahinsasa Rathnayake

Abstract The life cycle stage of paddy rice cultivation can be excluded with a zero-inventory allocation rule for the life cycle scenario of bioethanol production from unutilized rice straw, i.e., rice straw with no applied valorization in current practice. Accordingly, this study evaluates the life cycle net energy analysis and greenhouse gas (GHG) assessment for a scaled-up bioethanol production plant using unutilized rice straw as the feedstock. The process simulation technique is integrated to model a scaled-up production plant to produce bioethanol at 99.7 vol% purity from unutilized rice straw, and the simulation results are retrieved to calculate inventory data for life cycle assessment (LCA). The simulated mass flow and energy flow results are comparable with that of real plants, reported in the published literature, which validates the process simulations in this study. Inclusive of energy generation using the waste flows in the process (i.e., wastewater and solid residues), the life cycle net energy analysis results show a net energy gain of 7,804.0 MJ/m3 of bioethanol with a net renewable energy gain of 38,230.9 MJ/m3 of bioethanol that corresponds to a net energy ratio of 1.20 and renewability factor of 5.49. The life cycle GHG assessment exhibits a net global warming potential of 584.8 kg CO2 eq./m3 of bioethanol. The effect of system boundary expansion up to the end-of-life stage as gasohol (E10), the sensitivity of the key process parameters, and the economic benefit via valorization of unutilized rice straw are further analyzed and discussed.


Author(s):  
Елена Сергеевна Бахвалова ◽  
Алексей Владимирович Быков ◽  
Линда Жановна Никошвили ◽  
Любовь Львовна Киви

В данной работе методом теории функционала плотности проведен расчет энергий адсорбции бензольного кольца на маленьких кластерах Pd (состоящих из четырех или девяти атомов). Показано, что адсорбция бензола на кластерах палладия ведет к заметному выигрышу системы в энергии: -146 кДж/моль в случае Pd и -117 кДж/моль в случае Pd. Кроме того, для системы Pd * CH рассчитаны энергии адсорбции хлор-, бром- и йоданизола. Показано, что адсорбция йоданизола, характеризующаяся наибольшим выигрышем системы в энергии (-278 кДж/моль), происходит диссоциативно и безактивационно, что принципиально отличает его от хлор- и броманизола. Полученные данные могут использоваться для объяснения различий в поведении катализаторов на основе сверхсшитого полистирола в реакциях кросс-сочетания различных арилгалогенидов c фенилбороновой кислотой, а также того факта, что арилйодиды могут провоцировать образование гомогенных форм палладия. In this paper, the density functional theory calculations were carried out in order to find the adsorption energies of a benzene ring on small Pd clusters consisting of four or nine atoms. The adsorption of benzene on palladium clusters was found to result in a noticeable energy gain of the system: -146 kJ/mol in the case of Pd, and -117 kJ/mol in the case of Pd. The adsorption energies of chloro-, bromo- and iodoanisole on Pd * CH were also calculated. The adsorption of iodoanisole was characterized by the highest energy gain of the system (-278 kJ/mol) and occurred dissociatively without activation, that fundamentally distinguished it from chloro- and bromoanisole. The data obtained can be used to explain the differences in the behavior of catalysts based on hypercross-linked polystyrene in cross-coupling reactions of various aryl halides and phenylboronic acid, and also the fact that aryl iodides can favor the formation of homogeneous forms of palladium.


2021 ◽  
Vol 929 ◽  
Author(s):  
Yu-Jen Chang ◽  
Ruey-Lin Chern ◽  
Yi-Ju Chou

We study the stability of unsteady particle-laden flows in long, tilted water columns in batch settling mode, where the quasi-steady assumption of base flow no longer holds for the fast settling of particles. For this purpose, we introduce a settling time scale in the momentum and transport equations to solve the unsteady base flow, and utilise non-modal analysis to examine the stability of the disturbance flow field. The base flow increases in magnitude as the settling speed decreases and attains its maximum value when the settling speed becomes infinitesimal. The time evolution of the disturbance flow energy experiences an algebraic growth caused by the lift-up mechanism of the wall-normal disturbance, followed by an exponential growth owing to the shear instability of the base flow. The streamwise and spanwise wavenumbers corresponding to the peak energy gain are identified for both stages. In particular, the flow instability is enhanced as the Prandtl number increases, which is attributed to the sharpening of the particle-laden interface. On the other hand, the flow instability is suppressed by the increase in settling speed, because less disturbance energy can be extracted from the base flow. There exists an optimal tilted angle for efficient sedimentation, where the particle-laden flow is relatively stable and is accompanied by a smaller energy gain of the disturbance.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Kevin A. Wood ◽  
Julia L. Newth ◽  
Geoff M. Hilton ◽  
Eileen C. Rees

Abstract Background Winter numbers of the northwest European population of Bewick’s Swans (Cygnus columbianus bewickii) declined recently by c. 40%. During the same period, numbers of two sympatric and ecologically-similar congeners, the Mute Swan (Cygnus olor) and Whooper Swan (Cygnus cygnus) showed increases or stability. It has been suggested that these opposing population trends could have a causal relationship, as Mute and Whooper Swans are larger and competitively dominant to Bewick’s Swans in foraging situations. If so, effects of competition of Mute and Whooper Swans on Bewick’s Swans should be detectable as measurable impacts on behaviour and energetics. Methods Here, we studied the diurnal behaviour and energetics of 1083 focal adults and first-winter juveniles (“cygnets”) of the three swan species on their winter grounds in eastern England. We analysed video recordings to derive time-activity budgets and these, together with estimates of energy gain and expenditure, were analysed to determine whether individual Bewick’s Swans altered the time spent on key behaviours when sharing feeding habitat with other swan species, and any consequences for their energy expenditure and net energy gain. Results All three swan species spent a small proportion of their total time (0.011) on aggressive interactions, and these were predominantly intraspecific (≥ 0.714). Mixed-effects models indicated that sharing feeding habitat with higher densities of Mute and Whooper Swans increased the likelihood of engaging in aggression for cygnet Bewick’s Swans, but not for adults. Higher levels of interspecific competition decreased the time spent by Bewick’s Swan cygnets on foraging, whilst adults showed the opposite pattern. When among low densities of conspecifics (< c. 200 individuals/km2), individual Bewick’s Swans spent more time on vigilance in the presence of higher densities of Mute and Whooper Swans, whilst individuals within higher density Bewick’s Swan flocks showed the opposite pattern. Crucially, we found no evidence that greater numbers of interspecific competitors affected the net energy gain of either adult or cygnet Bewick’s Swans. Conclusions We found no evidence that Bewick’s Swan net energy gain was affected by sharing agricultural feeding habitat with larger congeners during winter. This was despite some impacts on the aggression, foraging and vigilance behaviours of Bewick’s Swans, especially among cygnets. It is unlikely therefore that competition between Bewick’s Swans and either Mute or Whooper Swans at arable sites in winter has contributed to the observed decline in Bewick’s Swan numbers. Further research is needed, however, to test for competition in other parts of the flyway, including migratory stopover sites and breeding areas.


2021 ◽  
Vol 47 (5) ◽  
pp. 214-231
Author(s):  
Kevin Griffin ◽  
Thomas Harris ◽  
Sarah Bruner ◽  
Patrick McKenzie ◽  
Jeremy Hise

Background: Real-time monitoring of tree growth can provide novel information about trees in urban/suburban areas and the myriad ecosystem services they provide. By monitoring irrigated specimen trees, we tested the hypothesis that in trees with sufficient water, growth is governed by environmental factors regulating energy gain rather than by factors related to water use. Methods: Internet-enabled, high-resolution dendrometers were installed on 3 trees in Southampton, NY, USA. The instruments, along with a weather station, streamed data to a project web page that was updated once an hour. Growing periods were determined using a Hidden Markov Model based on a zero-growth model. Linear models and conditional inference trees correlated environmental variables to growth magnitude and rate of growth. Results: Growth was governed by the interacting environmental variables of air temperature, soil moisture, vapor pressure deficit (VPD), and took place primarily at night. Radial growth of spruce began April 14 after the accumulation of 69.7 °C growing degree days and ended September 7. Cedar growth began later (April 26) after the accumulation of 160.6 °C and ended later (November 3). During the observation period, these 3 modest suburban trees sequestered 115.1 kg of CO2. Conclusions: Though irrigated, residential tree growth in our experiment was affected by environmental factors relating to both water use and energy gain through photosynthesis. Linking tree growth to fluctuations in environmental conditions facilitates the development of a predictive understanding useful for ecosystem management and growth forecasting across future altering climates.


2021 ◽  
Author(s):  
Alexander Shemyakin
Keyword(s):  

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Etele Molnár ◽  
Dan Stutman

A detailed study of direct laser-driven electron acceleration in paraxial Laguerre–Gaussian modes corresponding to helical beams LG 0 m with azimuthal modes m = 1,2,3,4,5 is presented. Due to the difference between the ponderomotive force of the fundamental Gaussian beam LG 00 and helical beams LG 0 m , we found that the optimal beam waist leading to the most energetic electrons at full width at half maximum is more than twice smaller for the latter and corresponds to a few wavelengths Δ w 0 = 6,11,19 λ 0 for laser powers of P 0 = 0.1 , 1,10  PW. We also found that, for azimuthal modes m ≥ 3 , the optimal waist should be smaller than Δ w 0 < 19 λ 0 . Using these optimal values, we have observed that the average kinetic energy gain of electrons is about an order of magnitude larger in helical beams compared to the fundamental Gaussian beam. This average energy gain increases with the azimuthal index m leading to collimated electrons of a few 100 MeV energy in the direction of the laser propagation.


Sign in / Sign up

Export Citation Format

Share Document