Turbulent structure of the corner region affected by channel meandering

1997 ◽  
Author(s):  
Katsutoshi Watanabe ◽  
Hirofumi Onari ◽  
Takanori Saga
1997 ◽  
pp. 57-66
Author(s):  
Katsutoshi Watanabe ◽  
Hirofumi Onari ◽  
Takanori Saga ◽  
Takashi Saitou

2020 ◽  
Vol 1709 ◽  
pp. 012018
Author(s):  
E L Loboda ◽  
M V Agafontsev ◽  
A S Klimentiev ◽  
D P Kasymov ◽  
Y A Loboda ◽  
...  

2003 ◽  
Vol 33 (8) ◽  
pp. 671-676 ◽  
Author(s):  
M G Galushkin ◽  
V S Golubev ◽  
Yu N Zavalov ◽  
Andrei A Ionin ◽  
A A Kotkov ◽  
...  

Author(s):  
Liu Wenhua ◽  
Mo Yang ◽  
Li Ling ◽  
Qiao Liang ◽  
Yuwen Zhang

Turbulent flow and heat transfer in rectangular channel has an important significance in engineering. Conventional approach to caculate Nusselt number of rectangular channel approximately is to take the equivalent diameter as the characteristic length and use the classic circular channel turbulent heat transfer coefficient correlations. However, under these conditions, the caculation error of Nusselt number can reach to 14% and thus this approach can not substantially describe the variation of Nusselt number of rectangular cross-sections with different aspect ratios. Therefore, caculation by using equivalent diameter as the characteristic length in classic experiment formula needs to be corrected. Seven groups of rectangular channel models with different aspect ratios have been studied numerically in this paper. By using standard turbulence model, the flow and heat transfer law of air with varing properties has been studied in 4 different sets of conditions in Reynolds number. The simulation and experimental results are in good agreement. The simulation results show that with the increase of aspect ratio, the cross-sectional average Nusselt number increased, Nusselt number of circumferential wall distributed more evenly and the difference between the infinite plate channel and square channel went up to 25%. The effects of corner region and long\short sides on heat transfer have also been investigated in this paper. Results show that in rectangular channel, heat transfer in corner region is significantly weaker than it in other region. With the increase of aspect ratio, effect on the long side of heat transfer of the short side is gradually reduced, and then eventually eliminates completely in the infinite flat place. Based on the studies above, correction coefficient for rectangular channels with different aspect ratios has been proposed in this paper and the accuracy of the correction coefficient has been varified by numerical simulations. This can reflect the variation of Nusselt number under different aspect ratios more effectively and thus has current significance for project to calculate Nusselt number of heat transfer in rectangular channel.


2005 ◽  
pp. 37-46 ◽  
Author(s):  
Iehisa NEZU ◽  
Michio SANJOU ◽  
Hiroki WAKAMOTO ◽  
Tomonori DOI

2015 ◽  
Vol 780 ◽  
pp. 60-98 ◽  
Author(s):  
J. M. Lawson ◽  
J. R. Dawson

The statistics of the velocity gradient tensor $\unicode[STIX]{x1D63C}=\boldsymbol{{\rm\nabla}}\boldsymbol{u}$, which embody the fine scales of turbulence, are influenced by turbulent ‘structure’. Whilst velocity gradient statistics and dynamics have been well characterised, the connection between structure and dynamics has largely focused on rotation-dominated flow and relied upon data from numerical simulation alone. Using numerical and spatially resolved experimental datasets of homogeneous turbulence, the role of structure is examined for all local (incompressible) flow topologies characterisable by $\unicode[STIX]{x1D63C}$. Structures are studied through the footprints they leave in conditional averages of the $Q=-\text{Tr}(\unicode[STIX]{x1D63C}^{2})/2$ field, pertinent to non-local strain production, obtained using two complementary conditional averaging techniques. The first, stochastic estimation, approximates the $Q$ field conditioned upon $\unicode[STIX]{x1D63C}$ and educes quantitatively similar structure in both datasets, dissimilar to that of random Gaussian velocity fields. Moreover, it strongly resembles a promising model for velocity gradient dynamics recently proposed by Wilczek & Meneveau (J. Fluid Mech., vol. 756, 2014, pp. 191–225), but is derived under a less restrictive premise, with explicitly determined closure coefficients. The second technique examines true conditional averages of the $Q$ field, which is used to validate the stochastic estimation and provide insights towards the model’s refinement. Jointly, these approaches confirm that vortex tubes are the predominant feature of rotation-dominated regions and additionally show that shear layer structures are active in strain-dominated regions. In both cases, kinematic features of these structures explain alignment statistics of the pressure Hessian eigenvectors and why local and non-local strain production act in opposition to each other.


Sign in / Sign up

Export Citation Format

Share Document