Recognition of SAR images with enhanced scattering centers under extended operating conditions

2001 ◽  
Author(s):  
J. Khoury ◽  
Peter D. Gianino ◽  
Charles L. Woods
Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 3019 ◽  
Author(s):  
Jian Tan ◽  
Xiangtao Fan ◽  
Shenghua Wang ◽  
Yingchao Ren

A target recognition method of synthetic aperture radar (SAR) images is proposed via matching attributed scattering centers (ASCs) to binary target regions. The ASCs extracted from the test image are predicted as binary regions. In detail, each ASC is first transformed to the image domain based on the ASC model. Afterwards, the resulting image is converted to a binary region segmented by a global threshold. All the predicted binary regions of individual ASCs from the test sample are mapped to the binary target regions of the corresponding templates. Then, the matched regions are evaluated by three scores which are combined as a similarity measure via the score-level fusion. In the classification stage, the target label of the test sample is determined according to the fused similarities. The proposed region matching method avoids the conventional ASC matching problem, which involves the assignment of ASC sets. In addition, the predicted regions are more robust than the point features. The Moving and Stationary Target Acquisition and Recognition (MSTAR) dataset is used for performance evaluation in the experiments. According to the experimental results, the method in this study outperforms some traditional methods reported in the literature under several different operating conditions. Under the standard operating condition (SOC), the proposed method achieves very good performance, with an average recognition rate of 98.34%, which is higher than the traditional methods. Moreover, the robustness of the proposed method is also superior to the traditional methods under different extended operating conditions (EOCs), including configuration variants, large depression angle variation, noise contamination, and partial occlusion.


2021 ◽  
Vol 13 (8) ◽  
pp. 1455
Author(s):  
Jifang Pei ◽  
Weibo Huo ◽  
Chenwei Wang ◽  
Yulin Huang ◽  
Yin Zhang ◽  
...  

Multiview synthetic aperture radar (SAR) images contain much richer information for automatic target recognition (ATR) than a single-view one. It is desirable to establish a reasonable multiview ATR scheme and design effective ATR algorithm to thoroughly learn and extract that classification information, so that superior SAR ATR performance can be achieved. Hence, a general processing framework applicable for a multiview SAR ATR pattern is first given in this paper, which can provide an effective approach to ATR system design. Then, a new ATR method using a multiview deep feature learning network is designed based on the proposed multiview ATR framework. The proposed neural network is with a multiple input parallel topology and some distinct deep feature learning modules, with which significant classification features, the intra-view and inter-view features existing in the input multiview SAR images, will be learned simultaneously and thoroughly. Therefore, the proposed multiview deep feature learning network can achieve an excellent SAR ATR performance. Experimental results have shown the superiorities of the proposed multiview SAR ATR method under various operating conditions.


2021 ◽  
Vol 30 (13) ◽  
Author(s):  
Zhichao Liu ◽  
Baida Qu

For the problem of target recognition of synthetic aperture radar (SAR) images, a method based on the combination of bidimensional empirical mode decomposition (BEMD) and extreme learning machine (ELM) is proposed. BEMD performs feature extraction for SAR images, producing multi-layer bidimensional intrinsic mode functions (BIMF). These BIMFs covey the discrimination of the original target while effectively eliminating the noises. ELM conducts the classification of each BIMF with high efficiency and robustness. Finally, the decisions from different BIMFs are fused using a linear weighting strategy to reach a reliable decision on the target label. The proposed method compensates the relatively low adaptivity of ELM to noise corruption by BEMD feature extraction. Moreover, the multi-layer BIMFs provide more discriminative information for correct decision. Hence, the overall recognition performance can be improved. As an efficient recognition algorithm, the proposed method can be used in an embedded system for wide applications. Experiments are designed and implemented on the moving and stationary target acquisition and recognition (MSTAR) dataset. The proposed method is tested under both the standard operating condition (SOC) and extended operating conditions (EOCs). The results reflect its effectiveness and robustness via quantitative comparisons.


2015 ◽  
Vol 22 (5) ◽  
pp. 1776-1789 ◽  
Author(s):  
Jin-rong Zhong ◽  
Gong-jian Wen ◽  
Bing-wei Hui ◽  
De-ren Li

2021 ◽  
Vol 13 (21) ◽  
pp. 4358
Author(s):  
Chuan Du ◽  
Lei Zhang

Some recent articles have revealed that synthetic aperture radar automatic target recognition (SAR-ATR) models based on deep learning are vulnerable to the attacks of adversarial examples and cause security problems. The adversarial attack can make a deep convolutional neural network (CNN)-based SAR-ATR system output the intended wrong label predictions by adding small adversarial perturbations to the SAR images. The existing optimization-based adversarial attack methods generate adversarial examples by minimizing the mean-squared reconstruction error, causing smooth target edge and blurry weak scattering centers in SAR images. In this paper, we build a UNet-generative adversarial network (GAN) to refine the generation of the SAR-ATR models’ adversarial examples. The UNet learns the separable features of the targets and generates the adversarial examples of SAR images. The GAN makes the generated adversarial examples approximate to real SAR images (with sharp target edge and explicit weak scattering centers) and improves the generation efficiency. We carry out abundant experiments using the proposed adversarial attack algorithm to fool the SAR-ATR models based on several advanced CNNs, which are trained on the measured SAR images of the ground vehicle targets. The quantitative and qualitative results demonstrate the high-quality adversarial example generation and excellent attack effectiveness and efficiency improvement.


Author(s):  
Andrei Anghel ◽  
Gabriel Vasile ◽  
Cornel Ioana ◽  
Remus Cacoveanu ◽  
Silviu Ciochina ◽  
...  

2015 ◽  
Vol 53 (8) ◽  
pp. 4379-4393 ◽  
Author(s):  
Andrei Anghel ◽  
Gabriel Vasile ◽  
Remus Cacoveanu ◽  
Cornel Ioana ◽  
Silviu Ciochina ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document