weak scattering
Recently Published Documents


TOTAL DOCUMENTS

141
(FIVE YEARS 18)

H-INDEX

21
(FIVE YEARS 2)

Author(s):  
Daipei Liu ◽  
Steffen Marburg ◽  
Nicole Kessissoglou

In this paper, we propose non-negative intensity (NNI) as an alternative intensity-based technique for target strength identification in marine ecosystem research. NNI identifies local surface regions of a body with positive-only sound power contributions. NNI is employed for sound scattering by fluid-loaded, fluid-filled elastic structures with weak scattering boundary conditions. Three numerical case studies are presented for which fully coupled fluid-structure interaction models based on the finite element method (FEM) and the boundary element method (BEM) are developed. To validate the three-way coupling between the structural and fluid domains, an elastic shell submerged in water and filled with different internal fluids is initially considered. Results for the scattered acoustic intensity obtained numerically are compared with analytical results from the literature. Models representing Antarctic krill of simple and complex geometry are developed. A 3×3 cylinder array representing a simplified aggregation of krill is also presented. Target strength is calculated using both the scattered intensity and NNI for different incident excitation angles. Results for NNI identify the surface regions of an individual organism or group of organisms with the greatest contribution to the scattered sound at the target strength locations.


2021 ◽  
Vol 13 (21) ◽  
pp. 4358
Author(s):  
Chuan Du ◽  
Lei Zhang

Some recent articles have revealed that synthetic aperture radar automatic target recognition (SAR-ATR) models based on deep learning are vulnerable to the attacks of adversarial examples and cause security problems. The adversarial attack can make a deep convolutional neural network (CNN)-based SAR-ATR system output the intended wrong label predictions by adding small adversarial perturbations to the SAR images. The existing optimization-based adversarial attack methods generate adversarial examples by minimizing the mean-squared reconstruction error, causing smooth target edge and blurry weak scattering centers in SAR images. In this paper, we build a UNet-generative adversarial network (GAN) to refine the generation of the SAR-ATR models’ adversarial examples. The UNet learns the separable features of the targets and generates the adversarial examples of SAR images. The GAN makes the generated adversarial examples approximate to real SAR images (with sharp target edge and explicit weak scattering centers) and improves the generation efficiency. We carry out abundant experiments using the proposed adversarial attack algorithm to fool the SAR-ATR models based on several advanced CNNs, which are trained on the measured SAR images of the ground vehicle targets. The quantitative and qualitative results demonstrate the high-quality adversarial example generation and excellent attack effectiveness and efficiency improvement.


Author(s):  
Dongwei Lu ◽  
Bo Pang ◽  
Shiqi Xing ◽  
Dahai Dai ◽  
Xuesong Wang

2020 ◽  
Vol 92 (7) ◽  
pp. 1011-1017
Author(s):  
Shaoze Lu ◽  
Jun Huang ◽  
Mingxu Yi

Purpose By reducing the coating thickness of the weak scattering source, the coating weight of the absorbing material can be reduced by 35% with little effect on the RCS. Design/methodology/approach To alleviate the weight-increasing problem caused by a large number of coating of absorbing materials, a method for zonal coating of absorbing materials for a stealth helicopter was proposed. By appropriately reducing the thickness of the coating at the secondary scattering locations, the amount of coating used is significantly reduced. Findings Compared with the full-coated, the zonal coating scheme achieves the corresponding RCS reduction effect. Practical implications Zonal coating design can achieve the effect of reducing coating weight and cost. Originality/value The effects of different coating methods on RCS were verified by electromagnetic scattering simulation, and the applicability of the zonal coating design of the absorbing material to the stealth helicopter was verified.


Crystals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 341 ◽  
Author(s):  
Peter Rafailov ◽  
Dimitre Dimitrov ◽  
Yen-Fu Chen ◽  
Chi-Shen Lee ◽  
Jenh-Yih Juang

A thorough analysis of the first-order vibrational spectrum of LuVO4 is presented by using polarized micro-Raman spectroscopy with special focus on the phonon modes with the weakest intensity and occasional controversial assignment. Group-theory analysis is carried out to demonstrate the determination of numbers and symmetries of the Raman active modes. Crystal- and correlation-field splitting effects in the vibrational spectrum of LuVO4 are discussed. Under conditions adjusted to minimize the birefringence effects we recorded, in each main scattering configuration, a series of Raman spectra in different sample orientations achieved by rotating the sample around the incident laser beam. The dependence of the Raman intensity on the rotational angle allowed us to identify the correct symmetry of the phonons with exceptionally weak scattering cross-section. A complete assignment of all twelve first-order Raman active phonons of LuVO4 is thus obtained.


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1718 ◽  
Author(s):  
Stefano Bellucci ◽  
Sergei Kruchinin ◽  
Stanislav P. Repetsky ◽  
Iryna G. Vyshyvana ◽  
Ruslan Melnyk

We consider the effect of atomic impurities on the energy spectrum and electrical conductance of graphene. As is known, the ordering of atomic impurities at the nodes of a crystal lattice modifies the graphene spectrum of energy, yielding a gap in it. Assuming a Fermi level within the gap domain, the electrical conductance diverges at the ordering of graphene. Hence, we can conclude about the presence of a metal–dielectric transition. On the other hand, for a Fermi level occurring outside of the gap, we see an increase in the electrical conductance as a function of the order parameter. The analytic formulas obtained in the Lifshitz one-electron strong-coupling model, describing the one-electron states of graphene doped with substitutional impurity atoms in the limiting case of weak scattering, are compared to the results of numerical calculations. To determine the dependence of the energy spectrum and electrical conductance on the order parameter, we consider both the limiting case of weak scattering and the case of finite scattering potential. The contributions of the scattering of electrons on a vapor of atoms to the density of states and the electrical conductance of graphene with an admixture of interstitial atoms are studied within numerical methods. It is shown that an increase in the electrical conductance with the order parameter is a result of both the growth of the density of states at the Fermi level and the time of relaxation of electron states. We have demonstrated the presence of a domain of localized extrinsic states on the edges of the energy gap arising at the ordering of atoms of the admixture. If the Fermi level falls in the indicated spectral regions, the electrical conductance of graphene is significantly affected by the scattering of electrons on clusters of two or more atoms, and the approximation of coherent potential fails in this case.


2020 ◽  
Vol 38 (6) ◽  
pp. 1543-1549 ◽  
Author(s):  
Qiuheng Song ◽  
Hekuo Peng ◽  
Shufang Zhou ◽  
Pengwei Zhou ◽  
Qian Xiao ◽  
...  

2020 ◽  
Vol 221 (2) ◽  
pp. 1412-1426 ◽  
Author(s):  
B Feng ◽  
W Xu ◽  
R S Wu ◽  
X B Xie ◽  
H Wang

SUMMARY Wave-equation-based traveltime tomography has been extensively applied in both global tomography and seismic exploration. Typically, the traveltime Fréchet derivative is obtained using the first-order Born approximation, which is only satisfied for weak velocity perturbations and small phase shifts (i.e. the weak-scattering assumption). Although the small phase-shift restriction can be handled with the Rytov approximation, the weak velocity-perturbation assumption is still a major limitation. The recently developed generalized Rytov approximation (GRA) method can achieve an improved phase accuracy of the forward-scattered wavefield, in the presence of large-scale and strong velocity perturbations. In this paper, we combine GRA with the classical finite-frequency theory and propose a GRA-based traveltime sensitivity kernel (GRA-TSK), which overcomes the weak-scattering limitation of the conventional finite-frequency methods. Numerical examples demonstrate that the accumulated time delay of forward-scattered waves caused by large-scale smooth perturbations can be correctly handled by the GRA-TSK, regardless of the magnitude of the velocity perturbations. Then, we apply the new sensitivity kernel to solve the traveltime inverse problem, and we propose a matrix-free Gauss–Newton method that has a faster convergence rate compared with the gradient-based method. Numerical tests show that, compared with the conventional adjoint traveltime tomography, the proposed GRA-based traveltime tomography can obtain a more accurate model with a faster convergence rate, making it more suited for recovering the large-intermediate scale of the velocity model, even for strong-perturbation and complex subsurface structures.


2020 ◽  
Vol 238 ◽  
pp. 06019
Author(s):  
Thomas van der Sijs ◽  
Omar El Gawhary ◽  
Paul Urbach

Electromagnetic scattering is the main phenomenon behind all optical measurement methods where one aims to retrieve the shape or physical properties of an unknown object by measuring how it scatters an incident optical field. Such an inverse problem is often approached by solving, several times, the corresponding direct scattering problem and trying to find the best estimate of the object which is compatible with a set of measurements. In the direct scattering problem, two regimes can be distinguished depending on the size of the object and the permittivity contrast: the weak-scattering regime and the strong-scattering regime. Generally, the presence of the scatterer alters the form of the incident field inside the scatterer. If that effect is neglected in the physical model, then one speaks of the so-called single-scattering regime or, more often, the Born approximation. The regime in which this approximation is valid is the weak-scattering regime. The corresponding inverse problem, that aims to retrieve the object from scattering data, becomes linear in this case. Linearizing the problem simplifies the method to solve it, but also introduces limitations to the maximum spatial resolution achievable in the reconstruction of the object. In the strong-scattering regime, multiple-scattering effects are not neglected and the inverse problem is treated in its full non-linear nature, which makes finding its solution a far more challenging task. Despite the existence of numerical methods, a powerful way to solve those direct problems would be to use a perturbation approach where the field is expressed as a series, known as the Born series. The advantage of a perturbation approach stems from the fact that each term of the series has a clear physical meaning and can unveil much more about the scattering process than a purely numerical approach can offer. Unfortunately, the series solution turns out to be strongly divergent in the strong-scattering regime, making it an unpractical approach for problems under these strong-scattering conditions. Thus, despite the fact that multiple scattering could, in principle, allow resolving sub-wavelength details of the unknown object, this possibility is in practice hampered by the divergent nature of the higher-order terms of the Born series. In this work, we show how to solve this problem by employing Padé approximants and how to treat electromagnetic problems well beyond the weak-scattering regime and provide an accurate evaluation of the scattered field even under strong-scattering conditions. Padé approximants are rational functions that can offer improvements in two ways, namely series acceleration of converging series and analytic continuation of a series outside its region of convergence. In the case of a symmetric approximant of order N, the approximant is calculated from 2N + 1 terms in the Born series, therefore incorporating multiple-scattering effects to which these higher-order corrections in the Born series correspond. We apply the method to two scalar scattering problems: that of a one-dimensional slab and that of an infinitely long cylinder, which reduces to a two-dimensional problem under normal incidence. In particular, we treat cases in the strong-scattering regime where the Born series diverges, but where Padé approximation retrieves a valuable result. In Fig. 1 the case of a cylinder is shown which is well beyond the weak-scattering regime, but where the most accurate Padé approximant gives a good result for the field. The presented approach incorporates multiple-scattering effects and can therefore represent an important building block to the application of the Born series to direct and inverse problems, with potential applications in superresolution, optical metrology, and phase retrieval.


Sign in / Sign up

Export Citation Format

Share Document