Statistical models of appearance for medical image analysis and computer vision

Author(s):  
Tim F. Cootes ◽  
Christopher J. Taylor
2021 ◽  
Vol 11 (8) ◽  
pp. 3830-3853
Author(s):  
Jimena Olveres ◽  
Germán González ◽  
Fabian Torres ◽  
José Carlos Moreno-Tagle ◽  
Erik Carbajal-Degante ◽  
...  

2014 ◽  
Vol 1014 ◽  
pp. 367-370
Author(s):  
Xiao Bo Yu ◽  
Yun Feng Zhang ◽  
Yue Gang Fu

Automatic splicing technology is all important research field of image processing, and has become a research focusing on the computer vision and computer graphics,and has important practical value in the fields of image splicing processing, medical image analysis and so on.On the basis of a linear transition method, this paper presents an algorithm which realizes to diminish the seams in overlap region according to the content of scenes.This algorithm avoids manual intervention during the mosaic process.With the help of automatic splicing technology based on the overlapping areas linear transition, the requirement of seamless image splicing can be met. 1.Introduction


Author(s):  
Dr. K. Naveen Kumar

Abstract: Recently, a machine learning (ML) area called deep learning emerged in the computer-vision field and became very popular in many fields. It started from an event in late 2012, when a deep-learning approach based on a convolutional neural network (CNN) won an overwhelming victory in the best-known worldwide computer vision competition, ImageNet Classification. Since then, researchers in many fields, including medical image analysis, have started actively participating in the explosively growing field of deep learning. In this paper, deep learning techniques and their applications to medical image analysis are surveyed. This survey overviewed 1) standard ML techniques in the computer-vision field, 2) what has changed in ML before and after the introduction of deep learning, 3) ML models in deep learning, and 4) applications of deep learning to medical image analysis. The comparisons between MLs before and after deep learning revealed that ML with feature input (or feature-based ML) was dominant before the introduction of deep learning, and that the major and essential difference between ML before and after deep learning is learning image data directly without object segmentation or feature extraction; thus, it is the source of the power of deep learning, although the depth of the model is an important attribute. The survey of deep learningalso revealed that there is a long history of deep-learning techniques in the class of ML with image input, except a new term, “deep learning”. “Deep learning” even before the term existed, namely, the class of ML with image input was applied to various problems in medical image analysis including classification between lesions and nonlesions, classification between lesion types, segmentation of lesions or organs, and detection of lesions. ML with image input including deep learning is a verypowerful, versatile technology with higher performance, which can bring the current state-ofthe-art performance level of medical image analysis to the next level, and it is expected that deep learning will be the mainstream technology in medical image analysis in the next few decades. “Deep learning”, or ML with image input, in medical image analysis is an explosively growing, promising field. It is expected that ML with image input will be the mainstream area in the field of medical image analysis in the next few decades. Keywords: Deep learning, Convolutional neural network, Massive-training artificial neural network, Computer-aided diagnosis, Medical image analysis, Classification (key words)


2020 ◽  
Vol 13 (5) ◽  
pp. 999-1007
Author(s):  
Karthikeyan Periyasami ◽  
Arul Xavier Viswanathan Mariammal ◽  
Iwin Thanakumar Joseph ◽  
Velliangiri Sarveshwaran

Background: Medical image analysis application has complex resource requirement. Scheduling Medical image analysis application is the complex task to the grid resources. It is necessary to develop a new model to improve the breast cancer screening process. Proposed novel Meta scheduler algorithm allocate the image analyse applications to the local schedulers and local scheduler submit the job to the grid node which analyses the medical image and generates the result sent back to Meta scheduler. Meta schedulers are distinct from the local scheduler. Meta scheduler and local scheduler have the aim at resource allocation and management. Objective: The main objective of the CDAM meta-scheduler is to maximize the number of jobs accepted. Methods: In the beginning, the user sends jobs with the deadline to the global grid resource broker. Resource providers sent information about the available resources connected in the network at a fixed interval of time to the global grid resource broker, the information such as valuation of the resource and number of an available free resource. CDAM requests the global grid resource broker for available resources details and user jobs. After receiving the information from the global grid resource broker, it matches the job with the resources. CDAM sends jobs to the local scheduler and local scheduler schedule the job to the local grid site. Local grid site executes the jobs and sends the result back to the CDAM. Success full completion of the job status and resource status are updated into the auction history database. CDAM collect the result from all local grid site and return to the grid users. Results: The CDAM was simulated using grid simulator. Number of jobs increases then the percentage of the jobs accepted also decrease due to the scarcity of resources. CDAM is providing 2% to 5% better result than Fair share Meta scheduling algorithm. CDAM algorithm bid density value is generated based on the user requirement and user history and ask value is generated from the resource details. Users who, having the most significant deadline are generated the highest bid value, grid resource which is having the fastest processor are generated lowest ask value. The highest bid is assigned to the lowest Ask it means that the user who is having the most significant deadline is assigned to the grid resource which is having the fastest processor. The deadline represents a time by which the user requires the result. The user can define the deadline by which the results are needed, and the CDAM will try to find the fastest resource available in order to meet the user-defined deadline. If the scheduler detects that the tasks cannot be completed before the deadline, then the scheduler abandons the current resource, tries to select the next fastest resource and tries until the completion of application meets the deadline. CDAM is providing 25% better result than grid way Meta scheduler this is because grid way Meta scheduler allocate jobs to the resource based on the first come first served policy. Conclusion: The proposed CDAM model was validated through simulation and was evaluated based on jobs accepted. The experimental results clearly show that the CDAM model maximizes the number of jobs accepted than conventional Meta scheduler. We conclude that a CDAM is highly effective meta-scheduler systems and can be used for an extraordinary situation where jobs have a combinatorial requirement.


Author(s):  
Sanket Singh ◽  
Sarthak Jain ◽  
Akshit Khanna ◽  
Anupam Kumar ◽  
Ashish Sharma

Sign in / Sign up

Export Citation Format

Share Document