Mean shift detection using active learning in dermatological images

2002 ◽  
Author(s):  
Gabriela Maletti ◽  
Bjarne K. Ersboll ◽  
Knut Conradsen
1998 ◽  
Vol 120 (3) ◽  
pp. 489-495 ◽  
Author(s):  
S. J. Hu ◽  
Y. G. Liu

Autocorrelation in 100 percent measurement data results in false alarms when the traditional control charts, such as X and R charts, are applied in process monitoring. A popular approach proposed in the literature is based on prediction error analysis (PEA), i.e., using time series models to remove the autocorrelation, and then applying the control charts to the residuals, or prediction errors. This paper uses a step function type mean shift as an example to investigate the effect of prediction error analysis on the speed of mean shift detection. The use of PEA results in two changes in the 100 percent measurement data: (1) change in the variance, and (2) change in the magnitude of the mean shift. Both changes affect the speed of mean shift detection. These effects are model parameter dependent and are obtained quantitatively for AR(1) and ARMA(2,1) models. Simulations and examples from automobile body assembly processes are used to demonstrate these effects. It is shown that depending on the parameters of the AMRA models, the speed of detection could be increased or decreased significantly.


2018 ◽  
Vol 192 ◽  
pp. 01005
Author(s):  
Nger Ling Chong ◽  
Michael Boon Chong Khoo ◽  
Zhi Lin Chong ◽  
Wei Lin Teoh

The side sensitive group runs double sampling (SSGRDS) chart incorporates the control charting concepts of the side sensitive group runs (SSGR) and double sampling (DS) charts. The SSGRDS chart which combines the efficiency of its basic charts is an effective approach to increase the speed of mean shift detection. The performance of the SSGRDS chart, based on the average number of observations to signal (ANOS), median number of observations to signal (MNOS) and percentiles of the number of observations to signal (PNOS) is investigated in this paper. Based on the results obtained, it is found that the SSGRDS chart becomes more sensitive in detecting mean shifts with an increase in the size of the process mean shift. With the use of MNOS and PNOS to measure the performance of the SSGRDS chart, the entire run length distribution is considered and this leads to a more complete understanding of the performance of the chart. The findings in this paper will provide a clearer picture on the run length properties of the SSGRDS chart which will facilitate practitioners in using the chart.


Sign in / Sign up

Export Citation Format

Share Document