Real-time road traffic classification using mobile video cameras

Author(s):  
A. Lapeyronnie ◽  
C. Parisot ◽  
J. Meessen ◽  
X. Desurmont ◽  
J.-F. Delaigle
Author(s):  
A.V. Novikov ◽  
K.V. Panevnikov ◽  
I.V. Pisarev

The paper reviews the use of mobile video monitoring equipment in coal mines. The most common option is the use of stationary video cameras with real-time video streaming to the mine dispatcher's control monitor via cables. Despite all the benefits of the information obtained, this method has certain limitations due to the specific features of the mine atmosphere, i.e. high humidity and dust levels, as well as the impossibility to organize video monitoring over the entire length of the mine workings. Therefore, mobile video monitoring equipment, both portable and vehicle-based, is efficient supplement to the stationary video cameras. The portable devices include smart phones and the battery-powered head lights with an integrated video camera, which have recently become very popular. In both cases, an important consideration, in addition to the actual video capturing, is the issue of transmitting video data to the top level, i.e. to the mine dispatcher's control panel. The following options are possible: connection to the mine wireless network hotspots via radio channel, reading the information in the lamp rooms when leaving the mine and real-time broadcasting from the mine to the top level. The assumption is made that in order to implement the fastest (and the most efficient) way that works without delays between capturing and transmitting of video data to the daylight surface, such as the latter of the options above, a communications infrastructure based on wireless and cable networks needs to be deployed in the mine workings. The required infrastructure is present in a number of systems designed to locate miners inside the mine workings as part of a multifunctional security system, which enables continuous radio communication of individual devices with infrastructure nodes and, therefore, real-time video data transmission.


Author(s):  
Yang Xu ◽  
Zhang Zhenjiang ◽  
Liu Yun

2017 ◽  
Vol 18 (1) ◽  
pp. 25-33 ◽  
Author(s):  
Jamal Raiyn

Abstract This paper introduces a new scheme for road traffic management in smart cities, aimed at reducing road traffic congestion. The scheme is based on a combination of searching, updating, and allocation techniques (SUA). An SUA approach is proposed to reduce the processing time for forecasting the conditions of all road sections in real-time, which is typically considerable and complex. It searches for the shortest route based on historical observations, then computes travel time forecasts based on vehicular location in real-time. Using updated information, which includes travel time forecasts and accident forecasts, the vehicle is allocated the appropriate section. The novelty of the SUA scheme lies in its updating of vehicles in every time to reduce traffic congestion. Furthermore, the SUA approach supports autonomy and management by self-regulation, which recommends its use in smart cities that support internet of things (IoT) technologies.


Author(s):  
Solomon Adegbenro Akinboro ◽  
Johnson A Adeyiga ◽  
Adebayo Omotosho ◽  
Akinwale O Akinwumi

<p><strong>Vehicular traffic is continuously increasing around the world, especially in urban areas, and the resulting congestion ha</strong><strong>s</strong><strong> be</strong><strong>come</strong><strong> a major concern to automobile users. The popular static electric traffic light controlling system can no longer sufficiently manage the traffic volume in large cities where real time traffic control is paramount to deciding best route. The proposed mobile traffic management system provides users with traffic information on congested roads using weighted sensors. A prototype of the system was implemented using Java SE Development Kit 8 and Google map. The model </strong><strong>was</strong><strong> simulated and the performance was </strong><strong>assessed</strong><strong> using response time, delay and throughput. Results showed that</strong><strong>,</strong><strong> mobile devices are capable of assisting road users’ in faster decision making by providing real-time traffic information and recommending alternative routes.</strong></p>


2019 ◽  
Vol 3 (2) ◽  
pp. 34 ◽  
Author(s):  
Markus Berger ◽  
Ralf Bill

Urban traffic noise situations are usually visualized as conventional 2D maps or 3D scenes. These representations are indispensable tools to inform decision makers and citizens about issues of health, safety, and quality of life but require expert knowledge in order to be properly understood and put into context. The subjectivity of how we perceive noise as well as the inaccuracies in common noise calculation standards are rarely represented. We present a virtual reality application that seeks to offer an audiovisual glimpse into the background workings of one of these standards, by employing a multisensory, immersive analytics approach that allows users to interactively explore and listen to an approximate rendering of the data in the same environment that the noise simulation occurs in. In order for this approach to be useful, it should manage complicated noise level calculations in a real time environment and run on commodity low-cost VR hardware. In a prototypical implementation, we utilized simple VR interactions common to current mobile VR headsets and combined them with techniques from data visualization and sonification to allow users to explore road traffic noise in an immersive real-time urban environment. The noise levels were calculated over CityGML LoD2 building geometries, in accordance with Common Noise Assessment Methods in Europe (CNOSSOS-EU) sound propagation methods.


Sign in / Sign up

Export Citation Format

Share Document