Silicon photonic wire circuits for on-chip optical interconnects

Author(s):  
William M. J. Green ◽  
Fengnian Xia ◽  
Solomon Assefa ◽  
Michael J. Rooks ◽  
Lidija Sekaric ◽  
...  
2011 ◽  
Author(s):  
P. Muellner ◽  
R. Bruck ◽  
M. Karl ◽  
M. Baus ◽  
T. Wahlbrink ◽  
...  

2009 ◽  
Vol E92-C (2) ◽  
pp. 217-223 ◽  
Author(s):  
Tao CHU ◽  
Hirohito YAMADA ◽  
Shigeru NAKAMURA ◽  
Masashige ISHIZAKA ◽  
Masatoshi TOKUSHIMA ◽  
...  

Nanophotonics ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 2377-2385 ◽  
Author(s):  
Zhao Cheng ◽  
Xiaolong Zhu ◽  
Michael Galili ◽  
Lars Hagedorn Frandsen ◽  
Hao Hu ◽  
...  

AbstractGraphene has been widely used in silicon-based optical modulators for its ultra-broadband light absorption and ultrafast optoelectronic response. By incorporating graphene and slow-light silicon photonic crystal waveguide (PhCW), here we propose and experimentally demonstrate a unique double-layer graphene electro-absorption modulator in telecommunication applications. The modulator exhibits a modulation depth of 0.5 dB/μm with a bandwidth of 13.6 GHz, while graphene coverage length is only 1.2 μm in simulations. We also fabricated the graphene modulator on silicon platform, and the device achieved a modulation bandwidth at 12 GHz. The proposed graphene-PhCW modulator may have potentials in the applications of on-chip interconnections.


Sign in / Sign up

Export Citation Format

Share Document