Silicon photonic wire Bragg grating for on-chip wavelength (de)multiplexing employing ring resonators

2011 ◽  
Author(s):  
P. Muellner ◽  
R. Bruck ◽  
M. Karl ◽  
M. Baus ◽  
T. Wahlbrink ◽  
...  
2008 ◽  
Author(s):  
William M. J. Green ◽  
Fengnian Xia ◽  
Solomon Assefa ◽  
Michael J. Rooks ◽  
Lidija Sekaric ◽  
...  

Biosensors ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 177
Author(s):  
Christos Adamopoulos ◽  
Asmaysinh Gharia ◽  
Ali Niknejad ◽  
Vladimir Stojanović ◽  
Mekhail Anwar

Multiplexed sensing in integrated silicon electronic-photonic platforms requires microfluidics with both high density micro-scale channels and meso-scale features to accommodate for optical, electrical, and fluidic coupling in small, millimeter-scale areas. Three-dimensional (3D) printed transfer molding offers a facile and rapid method to create both micro and meso-scale features in complex multilayer microfluidics in order to integrate with monolithic electronic-photonic system-on-chips with multiplexed rows of 5 μm radius micro-ring resonators (MRRs), allowing for simultaneous optical, electrical, and microfluidic coupling on chip. Here, we demonstrate this microfluidic packaging strategy on an integrated silicon photonic biosensor, setting the basis for highly multiplexed molecular sensing on-chip.


2017 ◽  
Vol 5 (3) ◽  
pp. 182 ◽  
Author(s):  
Xu Wang ◽  
Feng Zhou ◽  
Siqi Yan ◽  
Yuan Yu ◽  
Jianji Dong ◽  
...  

2009 ◽  
Vol E92-C (2) ◽  
pp. 217-223 ◽  
Author(s):  
Tao CHU ◽  
Hirohito YAMADA ◽  
Shigeru NAKAMURA ◽  
Masashige ISHIZAKA ◽  
Masatoshi TOKUSHIMA ◽  
...  

Nano Letters ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 6357-6363 ◽  
Author(s):  
Łukasz Dusanowski ◽  
Dominik Köck ◽  
Eunso Shin ◽  
Soon-Hong Kwon ◽  
Christian Schneider ◽  
...  

Nanophotonics ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 2377-2385 ◽  
Author(s):  
Zhao Cheng ◽  
Xiaolong Zhu ◽  
Michael Galili ◽  
Lars Hagedorn Frandsen ◽  
Hao Hu ◽  
...  

AbstractGraphene has been widely used in silicon-based optical modulators for its ultra-broadband light absorption and ultrafast optoelectronic response. By incorporating graphene and slow-light silicon photonic crystal waveguide (PhCW), here we propose and experimentally demonstrate a unique double-layer graphene electro-absorption modulator in telecommunication applications. The modulator exhibits a modulation depth of 0.5 dB/μm with a bandwidth of 13.6 GHz, while graphene coverage length is only 1.2 μm in simulations. We also fabricated the graphene modulator on silicon platform, and the device achieved a modulation bandwidth at 12 GHz. The proposed graphene-PhCW modulator may have potentials in the applications of on-chip interconnections.


Nanophotonics ◽  
2014 ◽  
Vol 3 (4-5) ◽  
pp. 329-341 ◽  
Author(s):  
Raji Shankar ◽  
Marko Lončar

AbstractThe mid-infrared (IR) wavelength region (2–20 µm) is of great interest for a number of applications, including trace gas sensing, thermal imaging, and free-space communications. Recently, there has been significant progress in developing a mid-IR photonics platform in Si, which is highly transparent in the mid-IR, due to the ease of fabrication and CMOS compatibility provided by the Si platform. Here, we discuss our group’s recent contributions to the field of silicon-based mid-IR photonics, including photonic crystal cavities in a Si membrane platform and grating-coupled high-quality factor ring resonators in a silicon-on-sapphire (SOS) platform. Since experimental characterization of microphotonic devices is especially challenging at the mid-IR, we also review our mid-IR characterization techniques in some detail. Additionally, pre- and post-processing techniques for improving device performance, such as resist reflow, Piranha clean/HF dip cycling, and annealing are discussed.


Sign in / Sign up

Export Citation Format

Share Document