Finding regions of interest in pathological images: an attentional model approach

Author(s):  
Francisco Gómez ◽  
Julio Villalón ◽  
Ricardo Gutierrez ◽  
Eduardo Romero
1997 ◽  
Vol 161 ◽  
pp. 197-201 ◽  
Author(s):  
Duncan Steel

AbstractWhilst lithopanspermia depends upon massive impacts occurring at a speed above some limit, the intact delivery of organic chemicals or other volatiles to a planet requires the impact speed to be below some other limit such that a significant fraction of that material escapes destruction. Thus the two opposite ends of the impact speed distributions are the regions of interest in the bioastronomical context, whereas much modelling work on impacts delivers, or makes use of, only the mean speed. Here the probability distributions of impact speeds upon Mars are calculated for (i) the orbital distribution of known asteroids; and (ii) the expected distribution of near-parabolic cometary orbits. It is found that cometary impacts are far more likely to eject rocks from Mars (over 99 percent of the cometary impacts are at speeds above 20 km/sec, but at most 5 percent of the asteroidal impacts); paradoxically, the objects impacting at speeds low enough to make organic/volatile survival possible (the asteroids) are those which are depleted in such species.


Author(s):  
Luisa Lugli ◽  
Stefania D’Ascenzo ◽  
Roberto Nicoletti ◽  
Carlo Umiltà

Abstract. The Simon effect lies on the automatic generation of a stimulus spatial code, which, however, is not relevant for performing the task. Results typically show faster performance when stimulus and response locations correspond, rather than when they do not. Considering reaction time distributions, two types of Simon effect have been individuated, which are thought to depend on different mechanisms: visuomotor activation versus cognitive translation of spatial codes. The present study aimed to investigate whether the presence of a distractor, which affects the allocation of attentional resources and, thus, the time needed to generate the spatial code, changes the nature of the Simon effect. In four experiments, we manipulated the presence and the characteristics of the distractor. Findings extend previous evidence regarding the distinction between visuomotor activation and cognitive translation of spatial stimulus codes in a Simon task. They are discussed with reference to the attentional model of the Simon effect.


1997 ◽  
Author(s):  
Gregory L. Brake ◽  
Michael E. Doherty ◽  
Gernot D. Kleiter
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document