Azobenzene liquid crystals for fast reversible optical switching and enhanced sensitivity for visible wavelengths

Author(s):  
Uladzimir Hrozhyk ◽  
Svetlana Serak ◽  
Nelson Tabiryan ◽  
Diane M. Steeves ◽  
Landa Hoke ◽  
...  
Nanophotonics ◽  
2018 ◽  
Vol 7 (7) ◽  
pp. 1333-1340 ◽  
Author(s):  
Chengkun Yang ◽  
Hao Zhang ◽  
Bo Liu ◽  
Haifeng Liu ◽  
Chao Wang ◽  
...  

AbstractAn electrically tunable whispering gallery mode (WGM) microresonator based on an HF-etched microstructured optical fiber (MOF) infiltrated with dual-frequency liquid crystals (DFLCs) is proposed and experimentally demonstrated for the investigation of the crossover frequency and Freedericksz transition of DFLCs. Experimental results indicate that for applied electric field with operation frequency below the crossover frequency, WGM resonance wavelength decreases with the increment of applied electric field strength. On the contrary, for applied electric field with operation frequency beyond the crossover frequency, WGM resonance dips show red shift as the applied electric field intensity increases. The proposed electrically tunable microcavity integrated with DFLCs is anticipated to find potential applications in optical filtering, all-optical switching, and electrically manipulated bi-directional micro-optics devices.


1990 ◽  
Author(s):  
Ashley D. Lloyd ◽  
Chang H. Wang ◽  
Brian S. Wherrett

2002 ◽  
Vol 81 (18) ◽  
pp. 3335-3337 ◽  
Author(s):  
Marco Peccianti ◽  
Claudio Conti ◽  
Gaetano Assanto ◽  
Antonio De Luca ◽  
Cesare Umeton

2018 ◽  
Vol 10 (4) ◽  
pp. 103 ◽  
Author(s):  
Gaetano Assanto ◽  
Sreekanth Perumbilavil ◽  
Armando Piccardi ◽  
Martti Kauranen

Using an external low-frequency electric field applied to dye-doped nematic liquid crystals, we demonstrate that random lasing obtained by optical pumping can be steered in angular direction by routing an all-optical waveguide able to collect the emitted light. By varying the applied voltage from 0 to 2 V, we reduce the walk-off and sweep the random laser guided beam over 7 degrees. Full Text: PDF ReferencesV. S. Letokhov, "Generation of light by a scattering medium with negative resonance absorption," Sov. Phys. JETP 26 (4), 835 (1968). DirectLink H. Cao, J. Y. Xu, D. Z. Zhang, S.-H. Chang, S. T. Ho, E. W. Seelig, X. Liu, and R. P. H. Chang, "Spatial Confinement of Laser Light in Active Random Media," Phys. Rev. Lett. 84 (24), 5584 (2000). CrossRef D. S. Wiersma, "The physics and applications of random lasers," Nature Phys. 4 (5) 359-367 (2008). CrossRef D. Wiersma and S. Cavalieri, "A temperature-tunable random laser," Nature 414, 708-709 (2001). CrossRef G. Strangi, S. Ferjani, V. Barna, A. De Luca, N. Scaramuzza, C. Versace, C. Umeton, and R. Bartolino, "Random lasing and weak localization of light in dye-doped nematic liquid crystals," Opt. Express 14 (17), 7737 (2006). CrossRef G. Strangi, S. Ferjani, V. Barna, A. De Luca, C. Versace, N. Scaramuzza, and R. Bartolino, "Random lasing in dye doped nematic liquid crystals: the role of confinement geometry," SPIE 6587, 65870P (2007) doi: 10.1117/12.722887 CrossRef S. Ferjani, V. Barna, A. De Luca, C. Versace, and G. Strangi, "Random lasing in freely suspended dye-doped nematic liquid crystals," Opt. Lett. 33(6), 557-559 (2008). CrossRef S. Ferjani, L-V. Sorriso, V. Barna, A. De Luca, R. De Marco, and G. Strangi, "Statistical analysis of random lasing emission properties in nematic liquid crystals," Phys. Rev. E 78 (1) 011707 (2008). CrossRef H. Bian, F. Yao, H. Liu, F. Huang, Y. Pei, C. Hou, and X. Sun, "Optically controlled random lasing based on photothermal effect in dye-doped nematic liquid crystals," Liq. Cryst. 41 (10), 1436-1441 (2014) CrossRef C. R. Lee, S. H. Lin, C. H. Guo, S. H. Chang, T. S. Mo, and S. C. Chu, "All-optically controllable random laser based on a dye-doped polymer-dispersed liquid crystal with nano-sized droplets," Opt. Express 18 (3), 2406-2412 (2010) CrossRef S. Perumbilavil, A. Piccardi, O. Buchnev, M. Kauranen, G. Strangi, and G. Assanto, "Soliton-assisted random lasing in optically-pumped liquid crystals," Appl. Phys. Lett. 109(16), 161105 (2016); ibid. 110(1), 1019902 (2017). CrossRef S. Perumbilavil, A. Piccardi, O. Buchnev, M. Kauranen, G. Strangi, and G. Assanto, "All-optical guided-wave random laser in nematic liquid crystals", Opt. Express 25 (5), 4672-4679 (2017). CrossRef S. Perumbilavil, A. Piccardi, R. Barboza, O. Buchnev, M. Kauranen, G. Strangi, and G. Assanto, "Beaming random laser with soliton control," Nature Comm., in press (2018) CrossRef M. Peccianti, C. Conti, G. Assanto, A. De Luca and C. Umeton, "Routing of Anisotropic Spatial Solitons and Modulational Instability in liquid crystals," Nature 432, 733-737 (2004). CrossRef J. Beeckman, K. Neyts and M. Haeltermann, "Patterned electrode steering of nematicons," J. Opt. A - Pure Appl. Opt. 8 (2), 214-220 (2006). CrossRef A. Piccardi, M. Peccianti, G. Assanto, A. Dyadyusha and M. Kaczmarek, "Voltage-driven in-plane steering of nematicons," Appl. Phys. Lett. 94, 091106 (2009). CrossRef R. Barboza, A. Alberucci, and G. Assanto, "Large electro-optic beam steering with Nematicons", Opt. Lett. 36 (14), 2611–2613 (2011). CrossRef A. Piccardi, A. Alberucci, R. Barboza, O. Buchnev, M. Kaczmarek, and G. Assanto, "In-plane steering of nematicon waveguides across an electrically adjusted interface", Appl. Phys. Lett. 100 (25), 251107 (2012). CrossRef Y. V. Izdebskaya, "Routing of spatial solitons by interaction with rod microelectrodes," Opt. Lett. 39(6), 1681-1684 (2014). CrossRef A. Pasquazi, A. Alberucci, M. Peccianti, and G. Assanto, "Signal processing by opto-optical interactions between self-localized and free propagating beams in liquid crystals," Appl. Phys. Lett. 87, 261104 (2005). CrossRef S. V. Serak, N. V. Tabiryan, M. Peccianti and G. Assanto, "Spatial Soliton All-Optical Logic Gates", IEEE Photon. Technol. Lett. 18 (12), 1287-1289 (2006). CrossRef M. Peccianti, C. Conti, G. Assanto, A. De Luca and C. Umeton, "All Optical Switching and Logic Gating with Spatial Solitons in Liquid Crystals," Appl. Phys. Lett. 81(18), 3335-3337 (2002). CrossRef A. Fratalocchi, A. Piccardi, M. Peccianti and G. Assanto, "Nonlinearly controlled angular momentum of soliton clusters," Opt. Lett. 32(11), 1447-1449 (2007). CrossRef Y. Izdebskaya, V. Shvedov, G. Assanto, and W. Krolikowski, Nat. Comm. 8, 14452 (2017). CrossRef M. Peccianti and G. Assanto, "Nematicons," Phys. Rep. 516, 147-208 (2012). CrossRef Y. Izdebskaya, A. Desyatnikov, G. Assanto and Y. Kivshar, "Deflection of nematicons through interaction with dielectric particles," J. Opt. Soc. Am. B 30(6), 1432-1437 (2013). CrossRef U. Laudyn, M. Kwasny, F. Sala, M. Karpierz, N. F. Smyth, and G. Assanto,"Curved solitons subject to transverse acceleration in reorientational soft matter," Sci. Rep. 7, 12385 (2017). CrossRef A. Alberucci, A. Piccardi, M. Peccianti, M. Kaczmarek and G. Assanto, "Propagation of spatial optical solitons in a dielectric with adjustable nonlinearity", Phys. Rev. A 82, 023806 (2010). CrossRef


2021 ◽  
Vol 11 (18) ◽  
pp. 8713
Author(s):  
Antonio d’Alessandro ◽  
Rita Asquini

Liquid crystals are interesting linear and nonlinear optical materials used to make a wide variety of devices beyond flat panel displays. Liquid crystalline materials can be used either as core or as cladding of switchable/reconfigurable waveguides with either an electrical or an optical control or both. In this paper, materials and main device structures of liquid crystals confined in different waveguide geometries are presented using different substrate materials, such as silicon, soda lime or borosilicate glass and polydimethylsiloxane. Modelling of the behaviour of liquid crystal nanometric molecular reorientation and related refractive index distribution under both low-frequency electric and intense optical fields is reported considering optical anisotropy of liquid crystals. A few examples of integrated optic devices based on waveguides using liquid crystalline materials as core for optical switching and filtering are reviewed. Reported results indicate that low-power control signals represent a significant feature of photonic devices based on light propagation in liquid crystals, with performance, which are competitive with analogous integrated optic devices based on other materials for optical communications and optical sensing systems.


Sign in / Sign up

Export Citation Format

Share Document