resonance wavelength
Recently Published Documents


TOTAL DOCUMENTS

234
(FIVE YEARS 93)

H-INDEX

20
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Vahid Najjari ◽  
Saeed Mirzanejhad ◽  
Amin Ghadi

Abstract A plasmonic refractive index sensor including a Metal-Insulator-Metal waveguide (MIM) with four teeth is proposed. Transmittance (T), Sensitivity (S) and Figure of Merit (FOM) investigated numerically and analysed via Finite Difference Time Domain method (FDTD). The simulation results show the generation of double Fano resonances in the system that the resonance wavelength and the resonance line-shapes can be adjusted by changing the geometry of the device. By optimizing the structure in the initial configuration, the maximum sensitivity of 1078nm/RIU and FOM of 3.62×105 is achieved. Then change the structure parameters. In this case, the maximum sensitivity and FOM are 1041nm/RIU and 2.94×104 respectively, thus two detection points can be used for the refractive index sensor. Due to proper performance and adjustable Fano resonance points, this structure is significant for fabricating sensitive refractive index sensor and plasmonic bandpass filter.


Photonics ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 22
Author(s):  
Zhiyong Wang ◽  
Yanghong Ou ◽  
Shiyu Wang ◽  
Yanzi Meng ◽  
Zi Wang ◽  
...  

In this paper, we present an easy-to-implement metamaterial absorber based on bulk Dirac semimetal (BDS). The proposed device not only obtains an ultrahigh quality factor (Q-factor) of 4133 and dynamic adjustability at high absorption, but also exhibits an excellent sensing performance with a figure of merit (FOM) of 4125. These outstanding properties are explained by the surface lattice resonance, which allows us to improve the quality factor significantly and control resonance wavelength precisely by tuning the unit cell periods, Fermi energy of the BDS, and structural parameters. Our findings can provide high-performance applications in terahertz filtering, detection, and biochemical sensing.


NANO ◽  
2021 ◽  
Author(s):  
Jun Zhu ◽  
Yihong Ren

We propose a new method to determine the concentration of a sucrose solution based on Fano resonance, demonstrate that the [Formula: see text]-shaped resonator and rectangular resonator structures can realize the Fano resonance, observe higher sensitivity up to 2142 nm/RIU, and use the structure to measure the concentration of a sucrose solution. This work shows that the Fano resonance wavelength removed to longer wavelengths as the concentration of the solution increased, and the resolution of solution concentration is [Formula: see text], which can be used for measuring the concentration of solutions other than sucrose. This research is an important first step towards creating the industrial application of photon properties to extend photon polariton applications throughout the infrared.


2021 ◽  
Author(s):  
Sanfeng Gu ◽  
Wei Sun ◽  
Meng Li ◽  
Ming Deng

Abstract A dual-core and dual D-shaped photonic crystal fiber (PCF) based surface plasmon resonance (SPR) sensor with silver and Aluminum Nitride (AlN) films is designed. The distribution characteristics of the electromagnetic fields of core and plasmon modes, as well as the sensing properties are numerically studied by finite element method (FEM). The structure parameters of the designed sensor are optimized by the optical loss spectrum. The results show the resonance wavelength variation of 489 nm for the refractive index (RI) range of 1.36~1.42. In addition, a maximum wavelength sensitivity of 13400 nm/RIU with the corresponding RI resolution of 7.46×10-6 RIU is obtained in the RI range of 1.41~1.42. The proposed sensor with the merits of high sensitivity, low cost and simple structure has a wide application in the fields of RI sensing, such as hazardous gas detection, environmental monitoring and biochemical analysis.


2021 ◽  
Author(s):  
Sasan Mohammadian ◽  
Farshad Babazadeh ◽  
Kambiz Abedi

Abstract Based on ring resonator with Microelectromechanical systems, optical XOR logic gate is proposed in this paper to realize the optical logic gate application. The proposed gate is basically structured on an optical ring resonator with 7µm radius and resonance wavelength of 1.55µm which is placed on the edge of a thin SiC circular diaphragm. In order to apply input voltages to electrodes, two very thin circular gold layers with 50nm air gap spacing are deposited under the diaphragm. Input voltages are considered as logic inputs and resonance wavelength shift as logic output. When an input DC voltage is applied across the diaphragm, an attractive electrostatic force is created between two electrodes. As a result, the diaphragm is deformed and an internal stress is created. This in turn changes the resonator refractive index due to the photoelastic effect and thus shifts its resonance wavelength about 35nm. COMSOL Multiphysics and MATLAB are carried out to verify FEA and numerical analysis of the designed structure, respectively. A good agreement between the simulations and analytical results is obtained. Enhancement of the wavelength shift and FSR are resulted. The proposed structure is used as an optical XOR gate for the first time.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3147
Author(s):  
Chung-Ting Chou Chao ◽  
Yuan-Fong Chou Chau ◽  
Sy-Hann Chen ◽  
Hung Ji Huang ◽  
Chee Ming Lim ◽  
...  

This study proposes a compact plasmonic metal-insulator-metal pressure sensor comprising a bus waveguide and a resonator, including one horizontal slot and several stubs. We calculate the transmittance spectrum and the electromagnetic field distribution using the finite element method. When the resonator’s top layer undergoes pressure, the resonance wavelength redshifts with increasing deformation, and their relation is nearly linear. The designed pressure sensor possesses the merits of ultrahigh sensitivity, multiple modes, and a simple structure. The maximum sensitivity and resonance wavelength shift can achieve 592.44 nm/MPa and 364 nm, respectively, which are the highest values to our knowledge. The obtained sensitivity shows 23.32 times compared to the highest one reported in the literature. The modeled design paves a promising path for applications in the nanophotonic field.


2021 ◽  
Author(s):  
Weihao Yang ◽  
Qing Liu ◽  
Hanbin Wang ◽  
Yiqin Chen ◽  
Run Yang ◽  
...  

Abstract Metamaterials with artificial optical properties have attracted significant research interest. In particular, artificial magnetic resonances in non-unity permeability tensor at optical frequencies in metamaterials have been reported. However, only non-unity diagonal elements of the permeability tensor have been demonstrated to date. A gyromagnetic permeability tensor with non-zero off-diagonal elements has not been observed at the optical frequencies. Here we report the observation of gyromagnetic properties in the near-infrared wavelength range in a magneto-plasmonic metamaterial. The non-zero off-diagonal permeability tensor element causes the transverse magneto-optical Kerr effect (TMOKE) under s-polarized incidence that otherwise vanishes if the permeability tensor is not gyromagnetic. By retrieving the permeability tensor elements from reflection, transmission, and TMOKE spectra, we show that the effective off-diagonal permeability tensor elements reach the 10-3 level at the resonance wavelength (~900 nm) of the split-ring resonators that is at least two orders of magnitude higher than that of magneto-optical materials at the same wavelength. The artificial gyromagnetic permeability is attributed to the change in the local electric field direction modulated by the split-ring resonators. Our study demonstrates the possibility of engineering the permeability and permittivity tensors in metamaterials at arbitrary frequencies, thereby promising a variety of applications of next-generation nonreciprocal photonic devices, magneto-plasmonic sensors, and active metamaterials.


2021 ◽  
Author(s):  
Somen Baidya ◽  
Ahmed M Hassan

Traditional molecular techniques for SARS-CoV-2 viral detection are time-consuming and can exhibit a high probability of false negatives. In this work, <a>we present a computational study of SARS-CoV-2 detection using plasmonic gold nanoparticles</a>. The resonance wavelength of a SARS-CoV-2 virus was recently estimated to be in the near-infrared region. By engineering gold nanospheres to specifically bind with the outer surface of the SARS-CoV-2 virus, the resonance frequency can be shifted to the visible range (380 nm – 700 nm). Moreover, we show that broadband absorption will emerge in the visible spectrum when the virus is partially covered with gold nanoparticles at a specific coverage percentage. This broadband absorption can be used to guide the development of an efficient and accurate colorimetric plasmon sensor for COVID-19 detection. Our observation also suggests that this technique is unaffected by the number of protein spikes present on the virus outer surface, hence can pave a potential path for a diagnostic tool independent on the number of protein spikes.


2021 ◽  
Author(s):  
Somen Baidya ◽  
Ahmed M Hassan

Traditional molecular techniques for SARS-CoV-2 viral detection are time-consuming and can exhibit a high probability of false negatives. In this work, <a>we present a computational study of SARS-CoV-2 detection using plasmonic gold nanoparticles</a>. The resonance wavelength of a SARS-CoV-2 virus was recently estimated to be in the near-infrared region. By engineering gold nanospheres to specifically bind with the outer surface of the SARS-CoV-2 virus, the resonance frequency can be shifted to the visible range (380 nm – 700 nm). Moreover, we show that broadband absorption will emerge in the visible spectrum when the virus is partially covered with gold nanoparticles at a specific coverage percentage. This broadband absorption can be used to guide the development of an efficient and accurate colorimetric plasmon sensor for COVID-19 detection. Our observation also suggests that this technique is unaffected by the number of protein spikes present on the virus outer surface, hence can pave a potential path for a diagnostic tool independent on the number of protein spikes.


Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2551
Author(s):  
Nikolay L. Kazanskiy ◽  
Svetlana N. Khonina ◽  
Muhammad A. Butt ◽  
Andrzej Kaźmierczak ◽  
Ryszard Piramidowicz

A multipurpose plasmonic sensor design based on a metal-insulator-metal (MIM) waveguide is numerically investigated in this paper. The proposed design can be instantaneously employed for biosensing and temperature sensing applications. The sensor consists of two simple resonant cavities having a square and circular shape, with the side coupled to an MIM bus waveguide. For biosensing operation, the analytes can be injected into the square cavity while a thermo-optic polymer is deposited in the circular cavity, which provides a shift in resonance wavelength according to the variation in ambient temperature. Both sensing processes work independently. Each cavity provides a resonance dip at a distinct position in the transmission spectrum of the sensor, which does not obscure the analysis process. Such a simple configuration embedded in the single-chip can potentially provide a sensitivity of 700 nm/RIU and −0.35 nm/°C for biosensing and temperature sensing, respectively. Furthermore, the figure of merit (FOM) for the biosensing module and temperature sensing module is around 21.9 and 0.008, respectively. FOM is the ratio between the sensitivity of the device and width of the resonance dip. We suppose that the suggested sensor design can be valuable in twofold ways: (i) in the scenarios where the testing of the biological analytes should be conducted in a controlled temperature environment and (ii) for reducing the influence on ambient temperature fluctuations on refractometric measurements in real-time mode.


Sign in / Sign up

Export Citation Format

Share Document