A study of image encryption aritlunetic based on chaotic sequences

Author(s):  
Xiaolong Huang
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yi He ◽  
Ying-Qian Zhang ◽  
Xin He ◽  
Xing-Yuan Wang

AbstractIn this paper, a novel image encryption algorithm based on the Once Forward Long Short Term Memory Structure (OF-LSTMS) and the Two-Dimensional Coupled Map Lattice (2DCML) fractional-order chaotic system is proposed. The original image is divided into several image blocks, each of which is input into the OF-LSTMS as a pixel sub-sequence. According to the chaotic sequences generated by the 2DCML fractional-order chaotic system, the parameters of the input gate, output gate and memory unit of the OF-LSTMS are initialized, and the pixel positions are changed at the same time of changing the pixel values, achieving the synchronization of permutation and diffusion operations, which greatly improves the efficiency of image encryption and reduces the time consumption. In addition the 2DCML fractional-order chaotic system has better chaotic ergodicity and the values of chaotic sequences are larger than the traditional chaotic system. Therefore, it is very suitable to image encryption. Many simulation results show that the proposed scheme has higher security and efficiency comparing with previous schemes.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Jiming Zheng ◽  
Zheng Luo ◽  
Zhirui Tang

In this paper, an improved two-dimensional logistic-sine coupling map (N2D-LSCM) and an improved Henon map (NHenon) are proposed. Furthermore, by combining N2D-LSCM and NHenon map, an image encryption algorithm is proposed based on these two chaotic systems and DNA coding. The chaotic sequences generated by N2D-LSCM are used as the parameters of NHenon. In the scrambling stage, DNA encoding is carried out for pixels after scrambling by two chaotic sequences generated by N2D-LSCM; in the stage of diffusion, DNA random coding acts on random matrix obtained by two chaotic sequences generated by NHenon, and DNA XOR operation is carried out with the image obtained in the scrambling stage to diffuse. Compared with other 2D map for image encryption algorithm, this algorithm exhibits good security and holds high efficiency.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Yingchun Hu ◽  
Simin Yu ◽  
Zeqing Zhang

In this paper, the security analysis of a color image encryption algorithm based on Hopfield chaotic neural network is given. The original chaotic image encryption algorithm includes permutation encryption and diffusion encryption. The result of cryptanalysis shows that the chaotic sequences generated by this algorithm are independent of plaintext image, and there exist equivalent permutation key and equivalent diffusion key. Therefore, according to chosen-plaintext attack, the equivalent diffusion key and the equivalent permutation key can be obtained by choosing two special plaintext images and the corresponding ciphertext images, respectively, and the plaintext image is further recovered from the ciphertext image. Theoretical analysis and numerical simulation experiment results verify the effectiveness of the analytical method. Finally, some improved suggestions for the original encryption algorithm are proposed to promote the security.


2019 ◽  
Vol 8 (3) ◽  
pp. 4481-4484

Image encryption has proven a successful method to communicate the confidential information. Some of the images may or may not be confidential. So there is a need to secure the confidential images. Initially, symmetric encryption is used for security purpose. But it has the problem that if the key is revealed the interceptors can immediately decode it. To make the key transformation more secure, asymmetric encryption is introduced. In this two different keys are used for encoding and decoding. So even the interceptors hacked the key it cannot be possible to decode. In this project Elliptic Curve Cryptography (ECC) is utilized for generating the keys and the cross chaotic map used for generating the chaotic sequence. These chaotic sequences are utilized to encode the image for secure communication.


2015 ◽  
pp. 228
Author(s):  
حكمت نجم عبدالله ◽  
اثير جبار منصور ◽  
هادى طارش زبون

Author(s):  
Ming-Ku Feng ◽  
Shui-Sheng Qiu ◽  
Xiong-Ying Liu ◽  
Jian-Xiu Jin

2014 ◽  
Vol 556-562 ◽  
pp. 5168-5171 ◽  
Author(s):  
Yan Xu

The author proposes a novel DCT domain image encryption algorithm based on Lorenz chaotic system. The paper firstly subdivides digital image into sub-images, each of which is transformed with DCT transform. Then some DCT transform coefficients are selected with filtering. Finally the retained DCT transform coefficients are cross encrypted with three chaotic sequences which Lorenz chaotic system generates. Simulation experiments and secure performance analysis show that the algorithm has a good encryption effect and anti-attack abilities.


Sign in / Sign up

Export Citation Format

Share Document