Fractal Encoding of Grayscale Images

Author(s):  
Kojiro Matsushita ◽  
Toyotaro Tokimoto ◽  
Kengo Fujii ◽  
Hirotsugu Yamamoto

2021 ◽  
Vol 11 (15) ◽  
pp. 6721
Author(s):  
Jinyeong Wang ◽  
Sanghwan Lee

In increasing manufacturing productivity with automated surface inspection in smart factories, the demand for machine vision is rising. Recently, convolutional neural networks (CNNs) have demonstrated outstanding performance and solved many problems in the field of computer vision. With that, many machine vision systems adopt CNNs to surface defect inspection. In this study, we developed an effective data augmentation method for grayscale images in CNN-based machine vision with mono cameras. Our method can apply to grayscale industrial images, and we demonstrated outstanding performance in the image classification and the object detection tasks. The main contributions of this study are as follows: (1) We propose a data augmentation method that can be performed when training CNNs with industrial images taken with mono cameras. (2) We demonstrate that image classification or object detection performance is better when training with the industrial image data augmented by the proposed method. Through the proposed method, many machine-vision-related problems using mono cameras can be effectively solved by using CNNs.


Fractals ◽  
2009 ◽  
Vol 17 (02) ◽  
pp. 149-160 ◽  
Author(s):  
SHIGUO LIAN ◽  
XI CHEN ◽  
DENGPAN YE

In recent work, various fractal image coding methods are reported, which adopt the self-similarity of images to compress the size of images. However, till now, no solutions for the security of fractal encoded images have been provided. In this paper, a secure fractal image coding scheme is proposed and evaluated, which encrypts some of the fractal parameters during fractal encoding, and thus, produces the encrypted and encoded image. The encrypted image can only be recovered by the correct key. To maintain security and efficiency, only the suitable parameters are selected and encrypted through investigating the properties of various fractal parameters, including parameter space, parameter distribution and parameter sensitivity. The encryption process does not change the file format, keeps secure in perception, and costs little time or computational resources. These properties make it suitable for secure image encoding or transmission.


Sign in / Sign up

Export Citation Format

Share Document