SU-GG-I-32: Preliminary Performance Evaluation of CBCT Image Reconstruction from Reduced Projection Data by TV-Minimization

2010 ◽  
Vol 37 (6Part3) ◽  
pp. 3108-3108
Author(s):  
X Han ◽  
E Pearson ◽  
J Bian ◽  
S Cho ◽  
E Sidky ◽  
...  
2019 ◽  
Vol 64 (3) ◽  
pp. 035004 ◽  
Author(s):  
Nikos Efthimiou ◽  
Elise Emond ◽  
Palak Wadhwa ◽  
Christopher Cawthorne ◽  
Charalampos Tsoumpas ◽  
...  

2022 ◽  
pp. 1-13
Author(s):  
Lei Shi ◽  
Gangrong Qu ◽  
Yunsong Zhao

BACKGROUND: Ultra-limited-angle image reconstruction problem with a limited-angle scanning range less than or equal to π 2 is severely ill-posed. Due to the considerably large condition number of a linear system for image reconstruction, it is extremely challenging to generate a valid reconstructed image by traditional iterative reconstruction algorithms. OBJECTIVE: To develop and test a valid ultra-limited-angle CT image reconstruction algorithm. METHODS: We propose a new optimized reconstruction model and Reweighted Alternating Edge-preserving Diffusion and Smoothing algorithm in which a reweighted method of improving the condition number is incorporated into the idea of AEDS image reconstruction algorithm. The AEDS algorithm utilizes the property of image sparsity to improve partially the results. In experiments, the different algorithms (the Pre-Landweber, AEDS algorithms and our algorithm) are used to reconstruct the Shepp-Logan phantom from the simulated projection data with noises and the flat object with a large ratio between length and width from the real projection data. PSNR and SSIM are used as the quantitative indices to evaluate quality of reconstructed images. RESULTS: Experiment results showed that for simulated projection data, our algorithm improves PSNR and SSIM from 22.46db to 39.38db and from 0.71 to 0.96, respectively. For real projection data, our algorithm yields the highest PSNR and SSIM of 30.89db and 0.88, which obtains a valid reconstructed result. CONCLUSIONS: Our algorithm successfully combines the merits of several image processing and reconstruction algorithms. Thus, our new algorithm outperforms significantly other two algorithms and is valid for ultra-limited-angle CT image reconstruction.


2009 ◽  
Vol 2009 ◽  
pp. 1-8 ◽  
Author(s):  
Xing Zhao ◽  
Jing-jing Hu ◽  
Peng Zhang

Currently, 3D cone-beam CT image reconstruction speed is still a severe limitation for clinical application. The computational power of modern graphics processing units (GPUs) has been harnessed to provide impressive acceleration of 3D volume image reconstruction. For extra large data volume exceeding the physical graphic memory of GPU, a straightforward compromise is to divide data volume into blocks. Different from the conventional Octree partition method, a new partition scheme is proposed in this paper. This method divides both projection data and reconstructed image volume into subsets according to geometric symmetries in circular cone-beam projection layout, and a fast reconstruction for large data volume can be implemented by packing the subsets of projection data into the RGBA channels of GPU, performing the reconstruction chunk by chunk and combining the individual results in the end. The method is evaluated by reconstructing 3D images from computer-simulation data and real micro-CT data. Our results indicate that the GPU implementation can maintain original precision and speed up the reconstruction process by 110–120 times for circular cone-beam scan, as compared to traditional CPU implementation.


Sign in / Sign up

Export Citation Format

Share Document