Treatment planning algorithm corrections accounting for random setup uncertainties in fractionated stereotactic radiotherapy

2000 ◽  
Vol 27 (4) ◽  
pp. 685-690 ◽  
Author(s):  
S. F. Zavgorodni
2018 ◽  
Vol 20 (2) ◽  
pp. 119-125
Author(s):  
David W. Andrews

Radiosurgery has become an important treatment alternative to surgery for a variety of intracranial lesions. As currently practiced, it has in fact replaced surgery as a standard of care in some instances, compliments surgery as a post-operative adjunct in others, and most commonly represents an alternative to surgery or the only treatment option. Radiosurgery techniques have evolved quickly with the development of new technologies enabling more complex yet more efficient treatment plans. As a consequence, these technologies have broadened radiosurgery applications and improved radiosurgery outcomes. Among these newer techniques, treatments involving fractionated stereotactic radiation referred to as fractionated stereotactic radiotherapy, or FSR, have emerged as a consequence of linear accelerators designed for and dedicated to stereotactic techniques. Without the logistical constraints of retrofitted general purpose linear accelerators used in radiation oncology, often available only once or twice a week, dedicated units have enabled the design of treatment paradigms that strive for an ideal treatment based on the radiobiology of the target and dose-limiting contiguous tissues.This chapter will summarize our fifteen year experience with the Varian 600SR, initially with the Radionics software more recently modified to a Novalis shaped beam radiosurgery unit, and our practice of FSR for a variety of intracranial lesions. Special attention will be devoted to tumors involving or near the special sensory cranial nerves. Given the versatility of the Novalis treatment planning platform, one has the option of comparing different treatment planning solutions at once, including stereotactic intensity-modulated radiation therapy (IMRT). For selected skull base lesions, we have found that stereotactic IMRT yields greater conformality than FSR and we will therefore include its application among fractionation strategies. 


Neurosurgery ◽  
2004 ◽  
Vol 55 (3) ◽  
pp. 519-531 ◽  
Author(s):  
Erol Veznedaroglu ◽  
David W. Andrews ◽  
Ronald P. Benitez ◽  
M. Beverly Downes ◽  
Maria Werner-Wasik ◽  
...  

Abstract OBJECTIVE: Despite the success of stereotactic radiosurgery, large inoperable arteriovenous malformations (AVMs) of 14 cm3 or more have remained largely refractory to stereotactic radiosurgery, with much lower obliteration rates. We review treatment of large AVMs either previously untreated or partially obliterated by embolization with fractionated stereotactic radiotherapy (FSR) regimens using a dedicated linear accelerator (LINAC). METHODS: Before treatment, all patients were discussed at a multidisciplinary radiosurgery board and found to be suitable for FSR. All patients were evaluated for pre-embolization. Those who had feeding pedicles amenable to glue embolization were treated. LINAC technique involved acquisition of a stereotactic angiogram in a relocatable frame that was also used for head localization during treatment. The FSR technique involved the use of six 7-Gy fractions delivered on alternate days over a 2-week period, and this was subsequently dropped to 5-Gy fractions after late complications in one of seven patients treated with 7-Gy fractions. Treatments were based exclusively on digitized biplanar stereotactic angiographic data. We used a Varian 600SR LINAC (Varian Medical Systems, Inc., Palo Alto, CA) and XKnife treatment planning software (Radionics, Inc., Burlington, MA). In most cases, one isocenter was used, and conformality was established by non-coplanar arc beam shaping and differential beam weighting. RESULTS: Thirty patients with large AVMs were treated between January 1995 and August 1998. Seven patients were treated with 42-Gy/7-Gy fractions, with one patient lost to follow-up and the remaining six with previous partial embolization. Twenty-three patients were treated with 30-Gy/5-Gy fractions, with two patients lost to follow-up and three who died as a result of unrelated causes. Of 18 evaluable patients, 8 had previous partial embolization. Mean AVM volumes at FSR treatment were 23.8 and 14.5 cm3, respectively, for the 42-Gy/7-Gy fraction and 30-Gy/5-Gy fraction groups. After embolization, 18 patients still had AVM niduses of 14 cm3 or more: 6 in the 7-Gy cohort and 12 in the 5-Gy cohort. For patients with at least 5-year follow-up, angiographically documented AVM obliteration rates were 83% for the 42-Gy/7-Gy fraction group, with a mean latency of 108 weeks (5 of 6 evaluable patients), and 22% for the 30-Gy/5-Gy fraction group, with an average latency of 191 weeks (4 of 18 evaluable patients) (P = 0.018). For AVMs that remained at 14 cm3 or more after embolization (5 of 6 patients), the obliteration rate remained 80% (4 of 5 patients) for the 7-Gy cohort and dropped to 9% for the 5-Gy cohort. A cumulative hazard plot revealed a 7.2-fold greater likelihood of obliteration with the 42-Gy/7-Gy fraction protocol (P = 0.0001), which increased to a 17-fold greater likelihood for postembolization AVMs of 14 cm3 or more (P = 0.003). CONCLUSION: FSR achieves obliteration for AVMs at a threshold dose, including large residual niduses after embolization. With significant treatment-related morbidities, further investigation warrants a need for better three-dimensional target definition with higher dose conformality.


Author(s):  
Keiichi Takehana ◽  
Daisuke Nakamura ◽  
Alshaymaa Abdelghaffar ◽  
Megumi Uto ◽  
Tomohiro Katagiri ◽  
...  

Abstract Objectives The purpose of this study was to assess the radiological change patterns in skull base meningiomas after conventionally fractionated stereotactic radiotherapy (CFSRT) to determine a simple and valid method to assess the tumor response. Materials and methods Forty-one patients with a benign skull base meningioma treated by CFSRT from March 2007 to August 2015 were retrospectively evaluated. We measured tumor volume (TV), long-axis diameter (LD), and short-axis diameter (SD) on both pre-treatment images and follow-up images of 1, 3, and 5 years after CFSRT, respectively. The paired t test was used to detect differences in the LD and SD change rates. Spearman’s correlation coefficients were calculated to evaluate relationships between the TV and the diameters changes. Results The number of available follow-up MRIs that was performed at 1, 3, and 5 years after the CFSRT was 41 (100%), 34 (83%), and 23 (56%), respectively. The change rates of SD were significantly higher than those of LD at every time point and more strongly correlated with the change rates of tumor volume at 3 and 5 years after CFSRT. Conclusions SD may be useful as a simple indicator of the tumor response for skull base meningioma after CFSRT. Key Points • The change rate in short-axis diameter is a useful and simple indicator of the response of skull base meningioma to conventionally fractionated stereotactic radiotherapy. • Conventionally fractionated stereotactic radiotherapy for skull base meningioma achieved excellent 5-year local control.


Sign in / Sign up

Export Citation Format

Share Document