scholarly journals Atmospheric Absorption Considerations in Airplane Flyover Noise at Altitudes above Sea Level

1973 ◽  
Vol 54 (1) ◽  
pp. 321-321
Author(s):  
Nathan Shapiro
1875 ◽  
Vol 23 (156-163) ◽  
pp. 201-202

The spectroscopic observations described in this paper were made with instruments belonging to the Royal Society, and in accordance with certain suggestions which had been made to the author by a committee appointed in consequence of a letter of his to Sir Edward Sabine, President, dated 13th February, 1866. In view of his residence at a considerable height above the sea-level, and of the exceedingly clear atmosphere prevailing at some periods of the year, it was suggested that the locality was peculiarly favourable for a determination of the lines of the solar spectrum due to atmospheric absorption, and that, for this purpose, the solar spectrum when the sun was high should be compared with the spectrum at sunset, and any additional lines which might appear in the latter case should be noted with reference to Kirchhoff’s map. Accordingly the author set to work with the spectroscope first supplied to him, and in the autumns of 1868 and 1869 mapped the differences in question from the extreme red to D. These results appeared in the 'Proceedings of the Royal Society' for June 16,1870, and the map of the spectra, sun high and sun low, of the region in question forms plate 1 of the 19th volume.


1967 ◽  
Vol 6 (3) ◽  
pp. 489 ◽  
Author(s):  
John L. Streete ◽  
J. H. Taylor ◽  
S. L. Ball

2021 ◽  
Vol 03 (03) ◽  
pp. 28-33
Author(s):  
D.A. Raupov ◽  

Radio Astronomical Observatory of Suffa, and new proposals for radioastroclimatic (seeing) studies for atmospheric radio prediction are described. The paper presents the results of many-year (2015-2020) and seasonal observations of the astroclimate at the construction site of the RT-70 radio telescope on the Suffa plateau (an altitude of 2400 m above sea level). Observations were carried out automatically every 10 minutes throughout the year, starting from November 2014.


1975 ◽  
Vol 26 ◽  
pp. 395-407
Author(s):  
S. Henriksen

The first question to be answered, in seeking coordinate systems for geodynamics, is: what is geodynamics? The answer is, of course, that geodynamics is that part of geophysics which is concerned with movements of the Earth, as opposed to geostatics which is the physics of the stationary Earth. But as far as we know, there is no stationary Earth – epur sic monere. So geodynamics is actually coextensive with geophysics, and coordinate systems suitable for the one should be suitable for the other. At the present time, there are not many coordinate systems, if any, that can be identified with a static Earth. Certainly the only coordinate of aeronomic (atmospheric) interest is the height, and this is usually either as geodynamic height or as pressure. In oceanology, the most important coordinate is depth, and this, like heights in the atmosphere, is expressed as metric depth from mean sea level, as geodynamic depth, or as pressure. Only for the earth do we find “static” systems in use, ana even here there is real question as to whether the systems are dynamic or static. So it would seem that our answer to the question, of what kind, of coordinate systems are we seeking, must be that we are looking for the same systems as are used in geophysics, and these systems are dynamic in nature already – that is, their definition involvestime.


Eos ◽  
2020 ◽  
Vol 101 ◽  
Author(s):  
Kate Wheeling

Researchers identify the main sources of uncertainty in projections of global glacier mass change, which is expected to add about 8–16 centimeters to sea level, through this century.


10.1029/ft354 ◽  
1989 ◽  
Author(s):  
John M. Dennison ◽  
Edwin J. Anderson ◽  
Jack D. Beuthin ◽  
Edward Cotter ◽  
Richard J. Diecchio ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document