scholarly journals II. On the atmospheric lines of the solar spectrum, illustrated by a map drawn on the same scale as that adopted by Kirchhoff

1875 ◽  
Vol 23 (156-163) ◽  
pp. 201-202

The spectroscopic observations described in this paper were made with instruments belonging to the Royal Society, and in accordance with certain suggestions which had been made to the author by a committee appointed in consequence of a letter of his to Sir Edward Sabine, President, dated 13th February, 1866. In view of his residence at a considerable height above the sea-level, and of the exceedingly clear atmosphere prevailing at some periods of the year, it was suggested that the locality was peculiarly favourable for a determination of the lines of the solar spectrum due to atmospheric absorption, and that, for this purpose, the solar spectrum when the sun was high should be compared with the spectrum at sunset, and any additional lines which might appear in the latter case should be noted with reference to Kirchhoff’s map. Accordingly the author set to work with the spectroscope first supplied to him, and in the autumns of 1868 and 1869 mapped the differences in question from the extreme red to D. These results appeared in the 'Proceedings of the Royal Society' for June 16,1870, and the map of the spectra, sun high and sun low, of the region in question forms plate 1 of the 19th volume.

1869 ◽  
Vol 159 ◽  
pp. 425-444 ◽  

In my first paper under the above title, kindly communicated by Dr. Sharpey to the Royal Society in 1866, was contained an account of the determination of the nature of Sun-spots by means of the spectroscope. The paper concluded as follows:— “May not the spectroscope afford us evidence of the existence of the 'red-flames’ which total eclipses have revealed to us in the sun’s atmosphere, although they escape all other methods of observation at other times? and if so, may we not learn something from this of the recent outburst of the star in Corona?”


1875 ◽  
Vol 165 ◽  
pp. 157-160

The spectroscopic observations hereafter discussed were made with instruments belonging to the Royal Society, and in accordance with certain suggestions which a Committee were good enough to make in connexion with my letter to Sir Edward Sabine, President, dated 13th February, 1866. In view of my residence at a considerable height, and the exceedingly clear atmosphere prevailing at some periods of the year, it was suggested that the locality was peculiarly favourable for comparing the solar spectrum when the sun was high with the corresponding spectrum at sunset; any differences between these aspects which might appear were to be noted on Kirchhoff’s well-known maps. Accordingly I set to work with the spectroscope first supplied to me (hereafter distinguished by the prefix old ), and during the autumns of 1868 and 1869 I mapped the differences in question from the extreme red to D: these results appeared in the ‘Proceedings of the Royal Society,’ No. 123, 1870, the Map being marked vol. xix. pl. 1; it is unnecessary, therefore, to dwell on this portion of my labours, excepting to add that the definitions and general procedure there adopted have been retained in the remarks which follow. 2. The observations hereafter noticed were always taken in the autumn , when, the rainy season having passed away, the atmosphere on these mountains is exceedingly clear, so that the sun, the object of inquiry, is bright even to his setting, and a spectrum may therefore be then obtained through a long stretch of terrestrial atmosphere corresponding to the height of the station of observation; on the other hand, with the sun about the meridian, the height of station places the observer above a relative amount of atmosphere, so that the spectrum obtainable at this time and about sunset are highly eligible for the comparison in view. Accordingly the two spectra are given in the accompanying map (Plate 25); and for easy comparison they are placed in juxtaposition. By “sun high” is to be understood any position for the sun within a couple of hours of the meridian; by “sun low” that the sun was within 3 or 4 diameters of his setting and yet quite bright. Indeed it is only when very near sunset that the marked alterations in the lines appear; so that the spectrum required is not only rarely obtainable, but it hardly lasts beyond 10 minutes of an evening. In this short period (when, moreover, the observer is fatigued with previous watching) changes from the sun-high spectrum must first be detected; then their position must be identified, and, failing this, found by measurement; next, the appearance should be drawn, and finally the drawing should be compared with the original: under these conditions a week may be easily absorbed by a single group. It is also to be borne in mind that no human eye will endure, without at least temporary injury, protracted watching of the bright solar spectrum for more than four or five weeks at a time; indeed, though I habitually used both eyes as a relief to one another, they both invariably suffered, and continued to do so for several weeks after every autumn. The following facts may be here mentioned:—


1860 ◽  
Vol 150 ◽  
pp. 149-160 ◽  

In a paper published in the Transactions of the Royal Society of Edinburgh for 1833, Sir David Brewster stated that by various means he had examined the lines of the solar spectrum, and those produced by the intervention of nitrous acid gas, and had delineated them on a scale four times greater than that employed in the beautiful map of Fraunhofer. Some portions also, which were more particularly studied, had been drawn on a scale twelve times greater. "Fraunhofer,” he continued, "has laid down in his map 354 lines, but in the delineations which I have executed, the spectrum is divided into more than 2000 visible and easily recognized portions, separated from each other by lines more or less marked, according as we use the simple solar spectrum, or the solar and gaseous spectrum combined, or the gaseous spectrum itself, in which any breadth can be given to the dark spaces.” None of these drawings, however, were published at the time. Frequent observations were continued during the years 1837, 1838, and 1841; and now, after a lapse of many years, the various delineations, having been collated and arranged by Dr. Gladstone, form the principal diagrams in the Plate accompanying this paper. Fig. 1 of Plate IV. represents the lines observed when the sun was at a considerable altitude above the horizon, and its light was examined by means of a good prism and telescope. The spectrum is delineated on so large a scale that it was necessary to divide it into two portions, the upper diagram representing the part between the least refrangible end and the line designated F 7, the lower diagram the part between F 7 and the most refrangible end. On a comparison with Fraunhofer’s large map, the principal lines and features will be easily recognized; but it will be seen that every portion of the spectrum contains lines wanting in the earlier drawing, and that parts which Fraunhofer has marked by one line are resolved into groups of bright spaces alternating with dark lines. The figure of the spectrum extends at the more refrangible or violet end to about the same distance as that of the Bavarian philosopher, but it exhibits a considerable extension at the red or less refrangible end. The principal lines are indicated by those letters, A, a , B, C, &c., which were assigned to them by him, and the larger intermediate lines are marked by numbers, 1, 2, 3, &c., beginning afresh on the more refrangible side of each letter; so that any one of these may be expressed by a combination of a letter and numeral; as, for instance, C 6, a remarkable line in the orange, of which much will be said hereafter. The extreme violet is lettered, both in this and in a map to be subsequently described, by that continuation of the alphabet which has been adopted by M. Becquerel. It was necessary to indicate in some similar manner the newly published, though not newly discovered, lines at the red end of the spectrum; and as the alphabet has not been appropriated by M. Becquerel beyond P, and it is not likely that further research will largely extend the spectrum in that direction, it was thought safe to take the end of the alphabet, and denoting the first strongly-marked line before A by Z, to work backwards into those slightly refrangible rays, which have been as yet unresolved by human vision. Some of the dark spaces of the spectrum are of an appreciable breadth, in which case they are represented as bands; and where the observation of a line was indistinct or uncertain, it is marked by an interrupted instead of a continuous line.


1880 ◽  
Vol 29 (1) ◽  
pp. 285-342 ◽  
Author(s):  
Piazzi Smyth

Although the Spectrum whose linear record is now presented to the Royal Society, Edinburgh, is unfortunately not so perfect as it might have been with better apparatus (but which I did not possess)—yet it represents the labour and expense connected with two voyages in 1877–1878 to Portugal; and many weeks work there in both years, with the sun in a more favourable position for observing really solar, and not telluric, or atmospheric, phenomena, than is ever, at any time, obtainable in Great Britain.


1888 ◽  
Vol 43 (258-265) ◽  
pp. 117-156 ◽  

Some years ago I commenced a research on the spectra of carbon in connexion with certain lines I had detected in my early photographs of the solar spectrum. I have been going on with this work at intervals ever since, and certain conclusions to which it leads, emphasising the vast difference between the chemical constitution of the sun and of some stars, recently suggested the desirability of obtaining observations of the spectra of meteorites and of the metallic elements at as low a temperature as possible. I have latterly, therefore, been engaged on the last-named inquiries. The work already done, read in conjunction with that on carbon, seems to afford evidence which amounts to demonstration on several important points.


1869 ◽  
Vol 17 ◽  
pp. 350-356 ◽  

Since my second paper under the above title was communicated to the Royal Society, the weather has been unfavourable to observatory work to an almost unprecedented degree; and, as a consequence, the number of observations I have been enabled to make during the last four months is very much smaller than I had hoped it would be. Fortunately, however, the time has not been wholly lost in consequence of the weather; for, by the kindness of Dr. Frankland, I have been able in the interim to familiarize myself at the Royal College of Chemistry with the spectra of gases and vapours under previously untried conditions, and, in addition to the results already communicated to the Royal Society by Dr. Frankland and myself, the experience I have gained at the College of Chemistry has guided me greatly in my observations at the telescope.


1875 ◽  
Vol 165 ◽  
pp. 577-586

We have the honour to communicate to the Royal Society the accompanying Spectroscopic Observations of the Chromosphere and of the Sun generally, made during the period between the 1st October, 1872, and the 31st December, 1873. The London observations have been made in Alexandra Road, Finchley Road, N. W.; the Rugby observations in the Temple Observatory at that place. The following details are given of the instruments and methods of observation employed.


1869 ◽  
Vol 17 ◽  
pp. 415-418 ◽  

I beg to lay before the Royal Society very briefly the results of observations made on the 11th instant in the neighbourhood of a fine spot, situated not very far from the sun’s limb. I. Under certain conditions the C and F lines may be observed bright on the sun , and in the spot-spectrum also, as in prominences or in the chromosphere. II. Under certain conditions, although they are not observed as bright lines, the corresponding Fraunhofer lines are blotted out.


Sign in / Sign up

Export Citation Format

Share Document