mass change
Recently Published Documents


TOTAL DOCUMENTS

428
(FIVE YEARS 123)

H-INDEX

38
(FIVE YEARS 6)

2021 ◽  
Author(s):  
Neda Haghighat ◽  
Damoon Ashtary-Larky ◽  
Ladan Aghakhani ◽  
Omid Asbaghi ◽  
Hamidreza Hosseinpour ◽  
...  

2021 ◽  
Vol 15 (12) ◽  
pp. 5705-5715
Author(s):  
Andy Aschwanden ◽  
Timothy C. Bartholomaus ◽  
Douglas J. Brinkerhoff ◽  
Martin Truffer

Abstract. Accurately projecting mass loss from ice sheets is of critical societal importance. However, despite recent improvements in ice sheet models, our analysis of a recent effort to project ice sheet contribution to future sea level suggests that few models reproduce historical mass loss accurately and that they appear much too confident in the spread of predicted outcomes. The inability of models to reproduce historical observations raises concerns about the models' skill at projecting mass loss. Here we suggest that uncertainties in the future sea level contribution from Greenland and Antarctica may well be significantly higher than reported in that study. We propose a roadmap to enable a more realistic accounting of uncertainties associated with such forecasts and a formal process by which observations of mass change should be used to refine projections of mass change. Finally, we note that tremendous government investment and planning affecting tens to hundreds of millions of people is founded on the work of just a few tens of scientists. To achieve the goal of credible projections of ice sheet contribution to sea level, we strongly believe that investment in research must be commensurate with the scale of the challenge.


Author(s):  
Dafit Feriyanto ◽  
◽  
Samir Sani Abdul Malik ◽  
Muhamad Fitri ◽  
Imam Hidayat ◽  
...  

Catalytic Converter (CATCO) material become an interesting field to investigate due to the common CATCO material being ceramic material that has high brittleness than metallic materials. Therefore, this research investigates the FeCrAl metallic material as CATCO substrate that is coated by γ-Al2O3 as a washcoat, Nickel Oxide (NiO) as a catalyst. The coating analysis was performed by ultrasonic using a frequency of 35 kHz and various ultrasonic times of 1, 1.5, 2, 2.5, and 3 hours and electroplating technique by sulphamate types electrolyte using variation times of 15, 30, 45, 60, and 75 minutes, a current density of 8 A/dm2. The result shows that the raw material was consists of Fe, Cr and Al with Fe element was dominated for 74.13wt%. Coated sample by ultrasonic consists of Fe, Cr, Al, O, and C elements due to FeCrAl substrate was deposited by γ-Al2O3 powder and by electroplating technique consists of Fe, Cr, Al, O, C, Ni and Na elements due to NiO deposition as catalyst material. TGA analysis observed that the highest mass change was observed by raw material 23.39 mg and UB+EL 30 min samples for lowest mass change of 2.85 mg with a point of the reaction is 0.07 mg/min may be caused by a protective oxide layer that developed during the coating process. Therefore, the coated metallic CATCO has a promising prospect to replace the ceramic CATCO due to high thermal stability by protecting layer and low mass change.


2021 ◽  
Vol 13 (19) ◽  
pp. 3935
Author(s):  
Luca Massotti ◽  
Christian Siemes ◽  
Günther March ◽  
Roger Haagmans ◽  
Pierluigi Silvestrin

ESA’s Next Generation Gravity Mission (NGGM) is a candidate Mission of Opportunity for ESA–NASA cooperation in the frame of the Mass Change and Geosciences International Constellation (MAGIC). The mission aims at enabling long-term monitoring of the temporal variations of Earth’s gravity field at relatively high temporal (down to 3 days) and increased spatial resolutions (up to 100 km) at longer time intervals. This implies also that time series of GRACE and GRACE-FO can be extended towards a climate series. Such variations carry information about mass change induced by the water cycle and the related mass exchange among atmosphere, oceans, cryosphere, land and solid Earth and will complete our picture of global and climate change. The main observable is the variation of the distance between two satellites measured by a ranging instrument. This is complemented by accelerometers that measure the nongravitational accelerations, which need to be reduced from ranging measurements to obtain the gravity signal. The preferred satellite constellation comprises one satellite pair in a near-polar and another in an inclined circular orbit. The paper focuses on the orbit selection methods for optimizing the spatial sampling for multiple temporal resolutions and then on the methodology for deriving the engineering requirements for the space segment, together with a discussion on the main mission parameters.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fengwei Wang ◽  
Yunzhong Shen ◽  
Qiujie Chen ◽  
Yu Sun

AbstractThe global sea-level budget is studied using the Gravity Recovery and Climate Experiment (GRACE) solutions, Satellite Altimetry and Argo observations based on the updated budget equation. When the global ocean mass change is estimated with the updated Tongji-Grace2018 solution, the misclosure of the global sea-level budget can be reduced by 0.11–0.22 mm/year compared to four other recent solutions (i.e. CSR RL06, GFZ RL06, JPL RL06 and ITSG-Grace2018) over the period January 2005 to December 2016. When the same missing months as the GRACE solution are deleted from altimetry and Argo data, the misclosure will be reduced by 0.06 mm/year. Once retained the GRACE C20 term, the linear trends of Tongji-Grace2018 and ITSG-Grace2018 solutions are 2.60 ± 0.16 and 2.54 ± 0.16 mm/year, closer to 2.60 ± 0.14 mm/year from Altimetry–Argo than the three RL06 official solutions. Therefore, the Tongji-Grace2018 solution can reduce the misclosure between altimetry, Argo and GRACE data, regardless of whether the C20 term is replaced or not, since the low-degree spherical harmonic coefficients of the Tongji-Grace2018 solution can capture more ocean signals, which are confirmed by the statistical results of the time series of global mean ocean mass change derived from five GRACE solutions with the spherical harmonic coefficients truncated to different degrees and orders.


Author(s):  
Jianli Chen ◽  
Byron Tapley ◽  
Mark E. Tamisiea ◽  
Himanshu Save ◽  
Clark Wilson ◽  
...  
Keyword(s):  

2021 ◽  
Vol 296 ◽  
pp. 123640
Author(s):  
Fatoumata Traore ◽  
Casey Jones ◽  
Sivakumar Ramanathan ◽  
Prannoy Suraneni ◽  
W.Micah Hale

2021 ◽  
Vol 13 (14) ◽  
pp. 2659
Author(s):  
Zhengtao Wang ◽  
Kunjun Tian ◽  
Fupeng Li ◽  
Si Xiong ◽  
Yu Gao ◽  
...  

The Gravity Recovery and Climate Experiment (GRACE) satellite provides time-varying gravity field models that can detect total water storage change (TWSC) from April 2002 to June 2017, and its second-generation satellite, GRACE Follow-On (GRACE-FO), provides models from June 2018, so there is a one year gap. Swarm satellites are equipped with Global Positioning System (GPS) receivers, which can be used to recover the Earth’s time-varying gravitational field. Swarm’s time-varying gravitational field models (from December 2013 to June 2018) were solved by the International Combination Service for Time-variable Gravity Field Solutions (COST-G) and the Astronomical Institute of the Czech Academy of Sciences (ASI). On a timely scale, Swarm has the potential to fill the gap between the two generations of GRACE satellites. In this paper, using 26 global watersheds as the study area, first, we explored the optimal data processing strategy for Swarm and then obtained the Swarm-TWSC of each watershed based on the optimal results. Second, we evaluated Swarm’s accuracy in detecting regional water storage variations, analyzed the reasons for its superior and inferior performance in different regions, and systematically explored its potential in detecting terrestrial water storage changes in land areas. Finally, we constructed the time series of terrestrial water storage changes from 2002 to 2019 by combining GRACE, Swarm, and GRACE-FO for the Amazon, Volga, and Zambezi Basins. The results show that the optimal data processing strategy of Swarm is different from that of GRACE. The optimal results of Swarm-TWSC were explored in 26 watersheds worldwide; its accuracy is related to the area size, runoff volume, total annual mass change, and instantaneous mass change of the watershed itself, among which the latter is the main factor affecting Swarm-TWSC. Knowledge of the Swarm-TWSC of 26 basins constructed in this paper is important to study long-term water storage changes in basins.


Sign in / Sign up

Export Citation Format

Share Document