A linearized Euler finite-difference time-domain sound propagation model with terrain-following coordinates

2006 ◽  
Vol 119 (6) ◽  
pp. 3813-3821 ◽  
Author(s):  
Dietrich Heimann ◽  
Regina Karle
2021 ◽  
Author(s):  
Daniel Wrobel

Energy usage is on the rise in both Canada and the United States. Because of this, there is a growing demand and strain on the current infrastructure. More importantly though, there is a strong demand for the use of renewable energy sources to meet this demand. One of the most popular renewable energy sources at this time is the wind turbine. In Ontario, there are plans to implement a significant number of them throughout the province. There are concerns though from residents in the vicinity of them that they cause too much noise, as well as health issues. However, some argue that these complaints stem from incorrectly calculated setback distances due to the lack of use of a detailed sound propagation model. In this study, a sound propagation model was developed using a Finite-Difference Time-Domain method, for a three dimensional computational domain, and simulated using data for a Siemens SWT-2.3-101 wind turbine. The simulations produced data of the sound propagation characteristics of each emitted wave, for each tested case. The model was developed as a starting point and building block for the eventual use in simulations of large domains and complex flow phenomena.


2021 ◽  
Author(s):  
Daniel Wrobel

Energy usage is on the rise in both Canada and the United States. Because of this, there is a growing demand and strain on the current infrastructure. More importantly though, there is a strong demand for the use of renewable energy sources to meet this demand. One of the most popular renewable energy sources at this time is the wind turbine. In Ontario, there are plans to implement a significant number of them throughout the province. There are concerns though from residents in the vicinity of them that they cause too much noise, as well as health issues. However, some argue that these complaints stem from incorrectly calculated setback distances due to the lack of use of a detailed sound propagation model. In this study, a sound propagation model was developed using a Finite-Difference Time-Domain method, for a three dimensional computational domain, and simulated using data for a Siemens SWT-2.3-101 wind turbine. The simulations produced data of the sound propagation characteristics of each emitted wave, for each tested case. The model was developed as a starting point and building block for the eventual use in simulations of large domains and complex flow phenomena.


2021 ◽  
Vol 263 (1) ◽  
pp. 5584-5594
Author(s):  
Yusaku Koshiba ◽  
Takuya Oshima

Total noise exposure is calculated for the evaluation of health effects caused by environmental noise. For the calculation, computationally drawn noise maps are used. In the computation process, sound propagation over ground surface with mixed types should be calculated for better accuracy. One engineering model that allows such calculation is the ground excess attenuation model of the Harmonoise model. However, the applicability of the model to such complex grounds remains unclear. In this study, a 40m-length ground surface with a discontinuity in flow resistivity is defined. By moving the discontinuity position, sound propagation from a point source and a receiver at each end is calculated using the model and a numerical method. The numerical method is the finite-difference time-domain method with porous medium modeling that has been proven to be accurate. It is found from the numerical results that in higher frequencies the excess attenuations in terms of the discontinuity position have fluctuations. The fluctuations are found to correspond to the interference by diffraction path difference passing the discontinuity. In contrast, the model results exhibit smooth transition from an extremity of single flow resistivity surface to another. A simple model of such diffraction needs to be developed.


Sign in / Sign up

Export Citation Format

Share Document