Accounting for spatiotemporal variability of shallow water waveguides in the geoacoustic inverse problem.

2009 ◽  
Vol 126 (4) ◽  
pp. 2285
Author(s):  
Kyle M. Becker
2001 ◽  
Vol 09 (02) ◽  
pp. 359-365 ◽  
Author(s):  
E. C. SHANG ◽  
Y. Y. WANG ◽  
T. F. GAO

To assess the adiabaticity of sound propagation in the ocean is very important for acoustic field calculating (forward problem) and tomographic retrieving(inverse problem). Most of the criterion in the literature is too restrictive, specially for the nongradual ocean structures. A new criterion of adiabaticity is suggested in this paper. It works for nongradual ocean structures such as front and internal solitary waves in shallow-water.


2005 ◽  
Vol 6 (4) ◽  
pp. 287-290 ◽  
Author(s):  
David Stickler

Author(s):  
Richard Beals ◽  
David H Sattinger ◽  
Jacek Szmigielski

Recently, the string density problem, considered in the pioneering work of M. G. Krein, has arisen naturally in connection with the Camassa–Holm equation for shallow water waves. In this paper we review the forward and inverse string density problems, with some numerical examples, and relate it to the Camassa–Holm equation, with special reference to multi-peakon/anti-peakon solutions. Under stronger assumptions, the Camassa–Holm spectral problem and the string density problem can be transformed to the Schrödinger spectral problem and its inverse problem. Recent results exploiting this transformation are reviewed briefly.


2016 ◽  
Vol 34 (3) ◽  
Author(s):  
Fernando De Oliveira Marin ◽  
Orlando Camargo Rodríguez ◽  
Luiz Gallisa Guimarães ◽  
Carlos Eduardo Parente Ribeiro

ABSTRACT. This paper discusses the estimation of sound speed perturbations in a shallow water waveguide, from measurements of modal travel times. The formulation of the Inverse Problem is reduced to a least squares solution, being highlighted that the choice of discretization of the set of model parameters is of fundamental importance. In the...Keywords: shallow water, tomography, orthogonal functions. RESUMO. Este trabalho aborda a estimativa de perturbações de velocidade do som em um ambiente de águas rasas, a partir de medições de tempo de percurso modal. A formulação do Problema Inverso é reduzida a uma solução por mínimos quadrados, sendo destacado que a escolha da discretização do conjunto de parâmetros do modelo é de fundamental...Palavras-chave: águas rasas, tomografia, funções ortogonais.


2004 ◽  
Vol 115 (5) ◽  
pp. 2407-2407
Author(s):  
David Stickler

1994 ◽  
Vol 96 (5) ◽  
pp. 3330-3330
Author(s):  
Ji‐Xun Zhou ◽  
Xue‐Zhen Zhang

Sign in / Sign up

Export Citation Format

Share Document