Attenuation of broadband noise in a reverberant room using a multichannel active noise control system

1995 ◽  
Vol 97 (5) ◽  
pp. 3255-3255
Author(s):  
Gary S. Guthart ◽  
William C. Nowlin ◽  
Gregory K. Toth
2021 ◽  
pp. 107754632110016
Author(s):  
Guo Long ◽  
Yawen Wang ◽  
Teik C Lim

Active noise control systems are generally application-specific, and an appropriate algorithm with an optimal configuration is desirable in the first stage of active noise control system design and deployment. This study presents a design of the subband active noise control system with optimal parameters for a practical broadband active noise control. Although the delayless subband active noise control has gained wide attention for broadband noise cancellation, an optimal design remains a challenge because of the complex interplay between multiple factors such as spectral leakage, delay and weight stacking distortion subject to a number of configurable parameters, and weight stacking method. The configurable parameters can hardly be optimized independently because the active noise control performance depends on the combined configuration. A simple near black box active noise control algorithm optimization model is thus established by incorporating the genetic algorithm optimization into the parametric design of the delayless subband algorithm. The automated process does not require an understanding of the performance characteristics for different parameters. The significance of applying the automated genetic algorithm optimization to the complex multiparameter nonlinear active noise control design is revealed by numerical simulations, particularly for the multichannel low-frequency broadband active noise control system configured with the delayless subband algorithms. This provides a way for the optimal parametric design of subband active noise control before being used in a practical complex scenario.


2008 ◽  
Vol 08 (01) ◽  
pp. L51-L64 ◽  
Author(s):  
ALLAHYAR MONTAZERI ◽  
JAVAD POSHTAN ◽  
MOHAMMAD HOSSEIN KAHAIE

One of the main important aspects in designing an active control system is the optimization of position and number of sensors and actuators. In this paper this problem is addressed for the implementation of a multi-channel active noise control (ANC) system with the aim of global reduction of broadband noise in a telephone kiosk. This includes optimizing the locations for loudspeakers and microphones, finding proper size of the control system, i.e. the number of loudspeakers and microphones, and optimization of the control signals. The mean of acoustic potential energy in the enclosure in a frequency range of 50 Hz to 300 Hz is selected as the performance index for optimization purpose. Several genetic algorithms are proposed and compared to find the global minimum of this performance index. In order to have a better performance in reaching the global minimum, the parameters of these genetic algorithms are tuned, and the best genetic algorithm is selected among them. The main difference between the proposed algorithms is the used coding scheme. Numerical simulations of the acoustical potential energy and also sound pressure at the height where the head of a person may be located, confirms the optimality of the locations proposed by the genetic algorithm.


Sign in / Sign up

Export Citation Format

Share Document