parametric design
Recently Published Documents


TOTAL DOCUMENTS

1764
(FIVE YEARS 465)

H-INDEX

34
(FIVE YEARS 6)

Author(s):  
Amal R. Tantawy

Abstract Background This research paper contributes to presenting a proposed framework for the formal and structural specifications of parametric digital architecture in order to increase knowledge and know-how in this field closely to specialists and those interested in it through the research methodology, which is divided first into the theoretical background to include a presentation of the definition of digital architecture and the most important pioneers of digital architecture, digital building materials and construction mechanisms parametric digital and what are the most important computer software used in parametric digital architecture in terms of design and construction implementation and identifying the most important digital specifications and characteristics that were mentioned in previous studies in this field and what are the unconventional digital esthetic values, then comes the role of the applied study in formulating a comprehensive matrix of parametric design modern and its impact on the development of traditional architectural models in digital architecture. Results The research study found that both (unrealistic shape) and (typical interaction) ranked first with the highest percentage reaching 100% in all study cases. The ratio of the volume of each to the total volume of all elements of morphological characteristics and non-traditional esthetic values was 8%, the most important characteristic of buildings in parametric digital architecture, in most of them, is the lack of realism to a very significant degree, and we always find a clear increase in the interaction, vitality and dynamism of buildings with the surrounding environment. Conclusions The most important characteristic of buildings in parametric digital architecture, in most of them, is the lack of realism to a very significant degree, and we always find a clear increase in the interaction, vitality and dynamism of buildings with the surrounding environment. While we conclude that the least characteristic of the parametric digital buildings is the simulation of nature or the tendency to everything that is traditional, as well it is often inclined to everything strange and unfamiliar.


Buildings ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 70
Author(s):  
Shamnath Thajudeen ◽  
Fredrik Elgh ◽  
Martin Lennartsson

The ability to offer customisation has been considered as a competitive advantage for industrialised house building (IHB) companies. Product platform approaches have been acknowledged as one of the prominent ways to improve both internal and external efficiency. However, the use of traditional platform-based strategies does not suffice for the design of engineer-to-order (ETO)-based components in a building system. The purpose of this research is to test and evaluate how the reuse of design assets can be achieved by using a parametric modelling approach to support the design process of ETO-based components in a post and beam building system. This is an additional study using the design platform approach (DPA) that contributes to expanding the knowledge for designing ETO-based components. This research proposes a parametric design platform method developed by following an inductive approach based on the findings from a detailed study on bracket connection with a single case study in a Swedish multi-storey house building company. The proposed method offers flexibility in modelling ETO building components, facilitates design automation, and shows a 20-times improvement in the modelling process. This approach can be used in any building system with ETO-based components by identifying, formalising, and reusing connected design assets. A key finding is that the ETO components can be shifted towards configurable solutions to achieve platform-based design.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yudong Xu ◽  
Xinming Zhang ◽  
Qiongying Lv ◽  
Guozhen Mu

Purpose A parametric method for designing the hub, casing and blades of the miniature centrifugal compressor impeller was developed. The relationship model of the size, aerodynamic and performance parameters of the centrifugal impeller was established. Based on the selected design parameters, the miniature centrifugal-type impeller was designed, and the work efficiency was calculated. Design/methodology/approach In this study, a micro-centrifugal compressor impeller with a diameter of less than 25 mm was designed. A parametric design method was developed, and the functional relationship between the geometric and gas fluidity parameters was established. Findings The results of this study showed that the performance parameters of the designed micro-centrifugal impeller satisfied the design requirements. The proposed method is useful as a reference for designing and analysing compressor impellers under high Reynolds number conditions. Originality/value A parametric design method was developed, and the functional relationship between the geometric and gas fluidity parameters was established. Under the Reynolds number conditions, the flow characteristics of the gas in the compressor were analysed; the shear-stress transport turbulence equation was solved using the finite volume method. In addition, the effects of the Reynolds number on the velocity, pressure, mass flow and efficiency of the micro-scale centrifugal compressor were evaluated. The results showed that the performance parameters of the designed micro-centrifugal impeller satisfied the design requirements. The proposed method is useful as a reference for designing and analysing compressor impellers under high Reynolds number conditions.


Aerospace ◽  
2022 ◽  
Vol 9 (1) ◽  
pp. 23
Author(s):  
Sarmad Dawood Salman Dawood ◽  
Ahmad Salahuddin Mohd Harithuddin ◽  
Mohammad Yazdi Harmin

Mass reduction is a primary design goal pursued in satellite structural design, since the launch cost is proportional to their total mass. The most common mass reduction method currently employed is to introduce honeycomb structures, with space qualified composite materials as facing materials, into the structural design, especially for satellites with larger masses. However, efficient implementation of these materials requires significant expertise in their design, analysis, and fabrication processes; moreover, the material procurement costs are high, therefore increasing the overall program costs. Thus, the current work proposes a low-cost alternative approach through the design and implementation of geometrically-shaped, parametrically-defined metal perforation patterns, fabricated by standard processes. These patterns included four geometric shapes (diamonds, hexagons, squares, and triangles) implemented onto several components of a structural design for a conceptual satellite, with a parametric design space defined by two scale factors and also two aspect ratio variations. The change in the structure’s fundamental natural frequency, as a result of implementing each pattern shape and parameter variation, was the selection criterion, due to its importance during the launcher selection process. The best pattern from among the four alternatives was then selected, after having validated the computational methodology through implementing experimental modal analysis on a scaled down physical model of a primary load-bearing component of the structural design. From the findings, a significant mass reduction percentage of 23.15%, utilizing the proposed perforation concept, was achieved in the final parametric design iteration relative to the baseline unperforated case while maintaining the same fundamental frequency. Dynamic loading analysis was also conducted, utilizing both the baseline unperforated and the finalized perforated designs, to check its capability to withstand realistic launch loads through applying quasi-static loads. The findings show that the final perforated design outperformed the baseline unperforated design with respect to the maximum displacements, maximum Von Mises stresses, and also the computed margin of safety. With these encouraging outcomes, the perforated design concept proved that it could provide an opportunity to develop low-cost satellite structural designs with reduced mass.


2021 ◽  
Vol 34 (05) ◽  
pp. 45-55
Author(s):  
Mauricio Díaz Valdés

During the next decades the construction will have to face many problems that never had inferred, it must reinvent itself to adapt to the new needs that it currently demands because it consumes too many energetic resources, it generates excess of CO2 emissions, consumption of natural resources and every day the construction is more expensive. The United Nations 2030 Agenda announced the objectives for sustainable development, this to try to mitigate the effects of climate change; The Coronavirus pandemic made humanity reflect on the emergencies that we must face and left us reflecting that we are not prepared for an emergency or crisis; These are key points that we must address to develop the new architecture. If we analyze the history of architecture, we can see that technology and science has always been a catalyst for humanity and has generated great solutions to the problems that befall us, this should motivate us to use technology and software in our favor. Therefore, we must prepare and generate new solutions, innovations and technology that focus on solving the new needs that architecture demands. The question is: how we can solve these problems?  The answer is through digital fabrication and parametric design. It is important to emphasize and make it clear, we cannot continue to build as we have been doing in the past century, our practices and approaches must change, and it is urgent to rethink the role of the architecture today.


Author(s):  
Rishabha Saraf ◽  
Anshul Gangele

Over the past two centuries, energy needs have risen dramatically, particularly due to the transportation and industry sectors. However, the main made fuels like (fossil fuels) are polluting and their reserves are limited. Governments & research organization work together for make the use of renewable resources a priority and reduce irresponsible use of natural supplies through increased conservation. The energy crisis is a broad is biggest problem in world. Most people don't realize to their reality unless the price of fuel at the pump goes up or there are lines at the fuel station. Plastics waste fuel is sustainable and futuristic solution of fossil fuel as well as biggest problem of waste management of plastic waste can solve by this fuel. In thesis we prepare the plastic waste fuel by application of paralysis process in this process use low, medium and high grade of plastic and heated with limited amount of oxygen melt the plastic. The result of paralysis finds of liquid fuel and flammable gas. This fuel can be used as a blend in diesel with a proportion of B0D100, B10D90 B20D80, & B30D70 where B tent to blend of plastic fuel and D tend to diesel as if B0D100 means blend 0% and diesel 100%. These blend run diesel engine. The blends are in 10%, 20% & 30% plastic paralysis oil with standard diesel fuel. For experiment simultaneous optimization used a method called “Taguchi” used in the engine such as injection pressure and load condition. Taguchi Method of Optimization is a simplest method of optimizing experimental parameters in less number of trials.


Author(s):  
Mohamed Ibren ◽  
Amelda Dianne Andan ◽  
Waqar Asrar ◽  
Erwin Sulaeman

A review on passive acoustic control of airfoil self-noise by means of porous trailing edge is presented. Porous surfaces are defined using various terms such as porosity, permeability, resistivity, porosity constant, dimensionless permeability, flow control severity and tortuosity. The primary purpose of this review paper is to provide key findings regarding the sources and mitigation techniques of self-induced noise generated by airfoils. In addition, various parametric design concepts were presented, which are critically important for porous-airfoil design specifications. Most research focus on experimentation with some recent efforts on numerical simulations. Detail study on flow topology is required to fully understand the unsteady flow nature. In general, noise on the airfoil surface is linked to the vortex shedding, instabilities on the surface, as well as feedback mechanism. In addition, acoustic scattering can be minimized by reducing extent of the porous region from the trailing edge while increasing resistivity. Moreover, blowing might also be another means of reducing noise near the trailing edge. Ultimately, understanding the flow physics well provides a way to unveil the unknowns in self-induced airfoil noise generation, mitigation, and control.


2021 ◽  
pp. 1-26
Author(s):  
Tonglong Huo ◽  
Jingjun Yu ◽  
Hongzhe Zhao ◽  
Xian Wei

Abstract Compliant linear-motion mechanisms are of great use in precision machines, due to their excellent performances such as infinite resolution and low cost. The accuracy of the mechanisms is an important consideration for mechanical design in applications, especially in the case of large working load. Considering that COmpliant Rolling-contact Element (CORE) pivot is characterized with high bearing capacity, the paper adopts it as a building block to design a family of compliant linear-motion mechanisms for applications of heavy load. These mechanisms are achieved by replacing four rigid pivots in a parallel four-bar mechanism with CORE pivots, and the motion accuracy is improved by means of contacting surfaces design of four CORE pivots. Firstly, structures of CORE pivot are introduced and five extended arrangements for bearing heavy load are presented. Meanwhile, motion for the CORE pivot is analyzed and preconditions for achieving a pure roll are discussed. Then, configuration of the compliant linear-motion mechanisms constructed by CORE pivots is obtained, and kinematics of the mechanisms is analyzed and parametric design condition for rectilinear motion is modeled. Based on the condition, detailed topological structures of the mechanisms are designed. Finally, motion simulations and experiment tests are implemented to verify accuracy of the proposed mechanisms. The results demonstrate that the mechanisms proposed in this paper are capable of offering a high-precision linear motion and providing a promising application prospect in precision machines.


Sign in / Sign up

Export Citation Format

Share Document