Frequency response of elastic bodies of revolution by the boundary element method

1995 ◽  
Vol 98 (3) ◽  
pp. 1558-1564 ◽  
Author(s):  
Prasanna S. Kondapalli ◽  
Michael El‐Raheb
2017 ◽  
Vol 42 (1) ◽  
pp. 49-59 ◽  
Author(s):  
Wanyi Tian ◽  
Lingyun Yao ◽  
Li Li

Abstract Nowadays, the finite element method (FEM) - boundary element method (BEM) is used to predict the performance of structural-acoustic problem, i.e. the frequency response analysis, modal analysis. The accuracy of conventional FEM/BEM for structural-acoustic problems strongly depends on the size of the mesh, element quality, etc. As element size gets greater and distortion gets severer, the deviation of high frequency problem is also clear. In order to improve the accuracy of structural-acoustic problem, a smoothed finite-element/boundary-element coupling procedure (SFEM/BEM) is extended to analyze the structural-acoustic problem consisting of a shell structure interacting with the cavity in this paper, in which the SFEM and boundary element method (BEM) models are used to simulate the structure and the fluid, respectively. The governing equations of the structural-acoustic problems are established by coupling the SFEM for the structure and the BEM for the fluid. The solutions of SFEM are often found to be much more accurate than those of the FEM model. Based on its attractive features, it was decided in the present work to extend SFEM further for use in structural-acoustic analysis by coupling it with BEM, the present SFEM/BEM is implemented to predict the vehicle structure-acoustic frequency response analysis, and two numerical experiments results show that the present method can provide more accurate results compared with the standard FEM/BEM using the same mesh. It indicates that the present SFEM/BEM can be widely applied to solving many engineering noise, vibration and harshness (NVH) problems with more accurate solutions.


2005 ◽  
Vol 72 (6) ◽  
pp. 962-965 ◽  
Author(s):  
Guangxian Shen ◽  
Xuedao Shu ◽  
Ming Li

The analysis of the forces and the rigidity of roller bearings is a multi-body contact problem, so it cannot be solved by contact boundary element method (BEM) for two elastic bodies. Based on the three-dimensional elastic contact BEM, according to the character of roller bearing, the new solution given in this paper replaces the roller body with a plate element and traction subelement. Linear elements are used in non-contact areas and a quadratic element is used in the contact area. The load distribution among the roller bodies and the load status in the inner rolling body can be extracted.


2007 ◽  
Vol 1 (2) ◽  
Author(s):  
Yao Zhenhan ◽  
Kong Fanzhong ◽  
Zheng Xiaoping

Based on the Rizzo’s direct boundary integral equation formulation for elasticity problems, elastic bodies with randomly distributed circular inclusions are simulated using the boundary element method. The given numerical examples show that the boundary element method is more accurate and more efficient than the finite element method for such type of problems. The presented approach can be successfully applied to estimate the equivalent elastic properties of many composite materials.


Sign in / Sign up

Export Citation Format

Share Document