Measurement and visualization of instantaneous power flow in steady‐state acoustic fields

1996 ◽  
Vol 99 (4) ◽  
pp. 2444-2445
Author(s):  
Thomas H. Burns
Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 148
Author(s):  
Lili Wu ◽  
Ganesh K. Venayagamoorthy ◽  
Jinfeng Gao

Power system steady-state security relates to its robustness under a normal state as well as to withstanding foreseeable contingencies without interruption to customer service. In this study, a novel cellular computation network (CCN) and hierarchical cellular rule-based fuzzy system (HCRFS) based online situation awareness method regarding steady-state security was proposed. A CCN-based two-layer mechanism was applied for voltage and active power flow prediction. HCRFS block was applied after the CCN prediction block to generate the security level of the power system. The security status of the power system was visualized online through a geographic two-dimensional visualization mechanism for voltage magnitude and load flow. In order to test the performance of the proposed method, three types of neural networks were embedded in CCN cells successively to analyze the characteristics of the proposed methodology under white noise simulated small disturbance and single contingency. Results show that the proposed CCN and HCRFS combined situation awareness method could predict the system security of the power system with high accuracy under both small disturbance and contingencies.


2014 ◽  
Vol 698 ◽  
pp. 694-698 ◽  
Author(s):  
Dmitry I. Bliznyuk ◽  
Pavel Y. Bannykh ◽  
Alexandra I. Khalyasmaa

The paper is devoted to the problem of power flow calculation and steady state analysis methods adaptation for four-phase electrical grids. These methods are based on developed models of four-phase power lines and phase convering transformers. The basis of research is nodal voltages equations for three-phase, four-phase and mixed (combined by three-and four-phase elements) grids. Algorithm of four-phfase elements parameters automized adaptation for power flow calculation model of "RastrWin" software have been developed.


2015 ◽  
Vol 9 (16) ◽  
pp. 2534-2543 ◽  
Author(s):  
Manuel Barragán-Villarejo ◽  
Alejandro Marano-Marcolini ◽  
Jose Maria Maza-Ortega ◽  
Antonio Gómez-Expósito

2018 ◽  
Vol 7 (4) ◽  
pp. 2344
Author(s):  
Nabil A. Hussein ◽  
Ayamn A. Eisa ◽  
Hassan M. Mahmoud ◽  
Safy A. Shehata ◽  
El-Saeed A. Othman

Interline power flow controller (IPFC) is the latest proposed flexible alternating current transmission systems (FACTS) device. Although IPFC was proposed in 1998, its performance studying stills good research area. It cannot be denied that, the first step for performance anal-ysis is developing an effective simulation model. This paper is tackling; the steady state modeling for a power system equipped with IPFC device, approaches for applying this model and the idea behind each approach. 5-Bus, 14-Bus and 30-Bus systems have been chosen as case studies to support the comparison between the three approaches.  


2012 ◽  
Vol 433-440 ◽  
pp. 7208-7212
Author(s):  
Ya Min Su Hlaing ◽  
Ze Ya Aung

This thesis implements power flow application, Newton-Raphson method. The Newton-Raphson method is mainly employed in the solution of power flow problems. The network of Myanma electric power system is used as the reference case. The system network contains 90 buses and 106 brunches. The weak points are found in the network by using Newton-Raphson method. Bus 16, 17, 85 and 86 have the most weak bus voltages. The medium transmission line between bus 87 and bus 17 is compensated by using MATLAB program software. The transmission line is compensated with shunt reactors, series and shunt capacitors to improve transient and steady-state stability, more economical loading, and minimum voltage dip on load buses and to supply the requisite reactive power to maintain the receiving end voltage at a satisfactory level. The system performance is tested under steady-state condition. This paper investigates and improves the steady–state operation of Myanma Power System Network.


Sign in / Sign up

Export Citation Format

Share Document