Performance Analysis on Transmission Line for Improvement of Load Flow

2012 ◽  
Vol 433-440 ◽  
pp. 7208-7212
Author(s):  
Ya Min Su Hlaing ◽  
Ze Ya Aung

This thesis implements power flow application, Newton-Raphson method. The Newton-Raphson method is mainly employed in the solution of power flow problems. The network of Myanma electric power system is used as the reference case. The system network contains 90 buses and 106 brunches. The weak points are found in the network by using Newton-Raphson method. Bus 16, 17, 85 and 86 have the most weak bus voltages. The medium transmission line between bus 87 and bus 17 is compensated by using MATLAB program software. The transmission line is compensated with shunt reactors, series and shunt capacitors to improve transient and steady-state stability, more economical loading, and minimum voltage dip on load buses and to supply the requisite reactive power to maintain the receiving end voltage at a satisfactory level. The system performance is tested under steady-state condition. This paper investigates and improves the steady–state operation of Myanma Power System Network.

Author(s):  
Nor Adni Binti Mat Le ◽  
W Mohd Nazmi bin W Musa ◽  
Nurlida Binti Ismail ◽  
Nurul Huda binti Ishak ◽  
Nur Ashida binti Salim

One of the major causes of voltage instability in power system is the reactive power limit. Therefore, this paper aims to analyze the effect of Static Var Compensator (SVC) on voltage stability of a power system. There are many ways to control the voltage, but in this paper only focus on the SVC and IEEE-9 buses. The SVC circuit and IEEE-9 buses were designed and modelled in Power World. The Newton Raphson method was applied to compute the load flow solution. Then, the reactive power (Q) was injected to SVC and the effect of SVC on IEEE 9-buses were studied. The analysis of voltage control was considered the conditions of fault occurred at the bus. The simulation results obtained in Power World demonstrate that the improvement voltage in the IEEE 9-buses when the Q was injected into SVC circuit. Besides, the QV curve was plotted to show the sensitivity and variation bus voltages with respect to the Q injection.


Author(s):  
Samina. E. Mubeen ◽  
Baseem Khan ◽  
R. K. Nema

<span>This paper utilizes the voltage source model of Unified Power Flow Controller (UPFC) and examines its abilities in mitigating the steady state stability margins of electric power system. It analyzes its behavior for different controls strategies and proposes the most efficient mode of controlling the controller for voltage stability enhancement. A systematic analytical methodology based on the concept of modal analysis of the modified load flow equations is employed to identify the area in a power system which is most prone voltage instability. Also to identify the most effective point of placement for the UPFC, a computer program has been developed using MATLAB. The results of analysis on 14 bus system is presented here as a case study.</span>


Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 148
Author(s):  
Lili Wu ◽  
Ganesh K. Venayagamoorthy ◽  
Jinfeng Gao

Power system steady-state security relates to its robustness under a normal state as well as to withstanding foreseeable contingencies without interruption to customer service. In this study, a novel cellular computation network (CCN) and hierarchical cellular rule-based fuzzy system (HCRFS) based online situation awareness method regarding steady-state security was proposed. A CCN-based two-layer mechanism was applied for voltage and active power flow prediction. HCRFS block was applied after the CCN prediction block to generate the security level of the power system. The security status of the power system was visualized online through a geographic two-dimensional visualization mechanism for voltage magnitude and load flow. In order to test the performance of the proposed method, three types of neural networks were embedded in CCN cells successively to analyze the characteristics of the proposed methodology under white noise simulated small disturbance and single contingency. Results show that the proposed CCN and HCRFS combined situation awareness method could predict the system security of the power system with high accuracy under both small disturbance and contingencies.


2015 ◽  
Vol 740 ◽  
pp. 438-441 ◽  
Author(s):  
Wei Zheng ◽  
Fang Yang ◽  
Zheng Dao Liu

The power flow calculation is study the steady-state operation of the power system as basic electrical calculations. It is given the power system network topology, device parameters and determines system health boundary conditions, draw a detailed operating status of the power system through numerical simulation methods, such as voltage amplitude and phase angle on the bus system the power distribution and the power loss. Flow calculation is the power system operation, planning and safety, reliability analysis, is fundamental to the system voltage regulation, network reconfiguration and reactive power optimization must call the function, so the trend has very important significance to calculate the power system.


2019 ◽  
Vol 3 (1) ◽  
pp. 26 ◽  
Author(s):  
Vishnu Sidaarth Suresh

Load flow studies are carried out in order to find a steady state solution of a power system network. It is done to continuously monitor the system and decide upon future expansion of the system. The parameters of the system monitored are voltage magnitude, voltage angle, active and reactive power. This paper presents techniques used in order to obtain such parameters for a standard IEEE – 30 bus and IEEE-57 bus network and makes a comparison into the differences with regard to computational time and effectiveness of each solver


Load Flow Analysis helps in error free operation of power system and also useful in forecasting the required equipment for expansion of the system. By forecasting the magnitude of the supply required along with effects caused by single or multiple defects in the system and calculating the magnitude of errors, it is very easy to compensate them using various techniques with minimum cost and effort. It means before installation the favorable sites and size of the infrastructure used are determined to maintain the power factor in the system. Here Power Flow Analysis is performed using Newton Raphson method. This method is used in solving power flow studies of various number of busesunder various conditions. In any network there will be undesired rise or drop or dissipation of voltage. Voltage instability decreases the efficiency of the system and also damages the equipment used. Hence voltage instability analysis is performed and magnitude of the instability is calculated and compensated using various techniques. Here we performed Load Flow Analysis on a 5bus system and Voltage Instability Analysis is also performed to the same with necessary outputs.[7]


Author(s):  
Ahmad Fateh Mohamad Nor ◽  
Marizan Sulaiman ◽  
Aida Fazliana Abdul Kadir ◽  
Rosli Omar

Voltage instability analysis in electric power system is one of the most important factors in order to maintain the equilibrium of the power system. A power system is said to be unstable if the system is not able to maintain the voltage at all buses in the system remain unchanged after the system is being subjected to a disturbance.The research work presented in this paper is about the analysis of voltage instability of electric power system by using voltage stability margin (VSM), load real power (P) margin, reactive power (Q) margin, reactive power-voltage (QV) and real power-voltage (PV) modal analysis. IEEE 30-bus system has been chosen as the power system. The load flow analysis are simulated by using Power World Simulator software version 16. Both QV and PV modal analysis were done by using MATLAB application software.


2013 ◽  
Vol 385-386 ◽  
pp. 668-674
Author(s):  
Jia Yang ◽  
Hai Bao ◽  
Ling Wang ◽  
Gang Liu

Steady-state power flow calculation belongs to power system steady-state analysis, and the data used in calculation should be steady-state data. However, the existing SCADA system hasnt distinguished the transient data from the steady-state data. The real-time measured data reflect the dynamic electric power system. It is the right reason for not all of the real-time measured power can be used for power flow calculation. In another word, it causes the matching problem between measured data and power flow calculations. Based on the current situation of information collection system, the characteristics of the measured data had been analyzed in this paper. And an effective acquisition method for steady-state measured data is proposed on the theoretical basis of the law of large numbers. It uses the average value of the measured data that in the same load state to approximate the steady-state true value in one period. And the steady-state data can be used in power flow calculation. The simulation results show that the method proposed in this paper ensures the accuracy and reliability of power flow calculation.


Author(s):  
S. Ali Al-Mawsawi ◽  
Mohammed R. Qader

It has recently been illustrated that the Unified Power Flow Controller (UPFC) installation location plays an important role in effecting nonlinearly in the UPFC steady state performance of the system. A Pulse Width Modulation (PWM) based on UPFC as a voltage regulator is modeled and analyzed to investigate the optimal position in the transmission line. From the study made in this paper, it is shown that the location of UPFC plays a significant part in effecting nonlinearly. It is also found from the simulation results that the distribution of the active and reactive power flows can be controlled by varying the modulation index of the device. 


Sign in / Sign up

Export Citation Format

Share Document