Transient axisymmetric response of a finite cylindrical shell with internal fluid loading. Part 1. Theory and numerical results

1997 ◽  
Vol 101 (5) ◽  
pp. 3043-3043
Author(s):  
Scott E. Hassan ◽  
Peter R. Stepanishen
1996 ◽  
Vol 3 (3) ◽  
pp. 193-200 ◽  
Author(s):  
L. Cheng

This article deals with the modeling of vibrating structures immersed in both light and heavy fluids, and possible applications to noise control problems and industrial vessels containing fluids. A theoretical approach, using artificial spring systems to characterize the mechanical coupling between substructures, is extended to include fluid loading. A structure consisting of a plate-ended cylindrical shell and its enclosed acoustic cavity is analyzed. After a brief description of the proposed technique, a number of numerical results are presented. The analysis addresses the following specific issues: the coupling between the plate and the shell; the coupling between the structure and the enclosure; the possibilities and difficulties regarding internal soundproofing through modifications of the joint connections; and the effects of fluid loading on the vibration of the structure.


1996 ◽  
Vol 18 (4) ◽  
pp. 14-22
Author(s):  
Vu Khac Bay

Investigation of the elastic state of curve beam system had been considered in [3]. In this paper the elastic-plastic state of curve beam system in the form of cylindrical shell is analyzed by the elastic solution method. Numerical results of the problem and conclusion are given.


Author(s):  
Lionel Oddo ◽  
Bernard Laulagnet ◽  
Jean-louis Guyader

Abstract The aim of this paper is to study the sound radiation by a cylindrical shell internally coupled with mechanical structures of high modal density. The model is based on a mobility technique. The numerical results show a smoothing of the cylinder’s velocity and radiation spectra associated with an increase of the apparent damping. The use of the S.E.A. method allows us to calculate an additional structural damping of the shell, equivalent to the effect of the internal structures.


Author(s):  
C-J Liao ◽  
W-K Jiang ◽  
H Duan ◽  
Y Wang

An analytical study on the vibration and acoustic radiation from an axially stiffened cylindrical shell in water is presented. Supposing that the axial stiffeners interact with the cylindrical shell only through radial forces, the reaction forces on the shell from stiffeners can be expressed by additional impedance. The coupled vibration equation of the finite cylindrical shell with axial stiffening is derived; in this equation additional impedance caused by the axial stiffeners is added. As a result, the vibration and sound radiation of the shell are dependent on the mechanical impedance of the shell, the radiation sound impedance, and the additional impedance of the axial stiffeners. Based on the numerical simulation, it is found that the existence of axial stiffeners decreases the sound radiation and surface average velocity, whereas it increases the radiation factor. The characteristics of the acoustic radiation can be understood from the simulation with good results, which show that the presented methodology can be used to study the mechanism of the acoustic radiation of the complicated cylindrical shell and to optimize its design.


Sign in / Sign up

Export Citation Format

Share Document