left right asymmetry
Recently Published Documents


TOTAL DOCUMENTS

712
(FIVE YEARS 76)

H-INDEX

76
(FIVE YEARS 4)

2021 ◽  
Author(s):  
István Márton ◽  
László Sarkadi

Abstract We investigated the effect of higher order dispersion on ultrafast photoionisation with Classical Trajectory Monte Carlo (CTMC) method for hydrogen and krypton atoms. In our calculations we used linearly polarised ultrashort 7 fs laser pulses, 6.5 × 1014 W/cm2 intensity, and a central wavelength of 800 nm. Our results show that electrons with the highest kinetic energies are obtained with transform limited (TL) pulses. The shaping of the pulses with negative second- third- or fourth- order dispersion results in higher ionisation yield and electron energies compared to pulses shaped with positive dispersion values. We have also investigated how the Carrier Envelope Phase (CEP) dependence of the ionisation is infuenced by dispersion. We calculated the left-right asymmetry as a function of energy and CEP for sodium atoms employing pulses of 4.5 fs, 800 nm central wavelength, and 4 × 1012 W/cm2 intensity. We found that the left-right asymmetry is more pronounced for pulses shaped with positive Group Delay Dispersion (GDD). It was also found that shaping a pulse with increasing amounts of GDD in absolute value blurs the CEP dependence, which is attributed to the increasing number of optical cycles.


2021 ◽  
Author(s):  
Emmanuelle Szenker-Ravi ◽  
Tim Ott ◽  
Muznah Khatoo ◽  
Anne Moreau de Bellaing ◽  
Wei Xuan Goh ◽  
...  

Author(s):  
Koichi Matsuo ◽  
Ryota Tamura ◽  
Kohji Hotta ◽  
Mayu Okada ◽  
Akihisa Takeuchi ◽  
...  

The locomotor system is highly bilateral at the macroscopic level. Homochirality of biological molecules is fully compatible with the bilateral body. However, whether and how single-handed cells contribute to the bilateral locomotor system is obscure. Here, exploiting the small number of cells in the swimming tadpole larva of the ascidian Ciona, we analyzed morphology of the tail at cellular and subcellular scales. Quantitative phase-contrast X-ray tomographic microscopy revealed a high-density midline structure ventral to the notochord in the tail. Muscle cell nuclei on each side of the notochord were roughly bilaterally aligned. However, fluorescence microscopy detected left-right asymmetry of myofibril inclination relative to the longitudinal axis of the tail. Zernike phase-contrast X-ray tomographic microscopy revealed the presence of left-handed helices of myofibrils in muscle cells on both sides. Therefore, the locomotor system of ascidian larvae harbors symmetry-breaking left-handed helical cells, while maintaining bilaterally symmetrical cell alignment. These results suggest that bilateral animals can override cellular homochirality to generate the bilateral locomotor systems at the supracellular scale.


2021 ◽  
Vol 118 (48) ◽  
pp. e2109210118
Author(s):  
Régis Chirat ◽  
Alain Goriely ◽  
Derek E. Moulton

Snails are model organisms for studying the genetic, molecular, and developmental bases of left–right asymmetry in Bilateria. However, the development of their typical helicospiral shell, present for the last 540 million years in environments as different as the abyss or our gardens, remains poorly understood. Conversely, ammonites typically have a bilaterally symmetric, planispiraly coiled shell, with only 1% of 3,000 genera displaying either a helicospiral or a meandering asymmetric shell. A comparative analysis suggests that the development of chiral shells in these mollusks is different and that, unlike snails, ammonites with asymmetric shells probably had a bilaterally symmetric body diagnostic of cephalopods. We propose a mathematical model for the growth of shells, taking into account the physical interaction during development between the soft mollusk body and its hard shell. Our model shows that a growth mismatch between the secreted shell tube and a bilaterally symmetric body in ammonites can generate mechanical forces that are balanced by a twist of the body, breaking shell symmetry. In gastropods, where a twist is intrinsic to the body, the same model predicts that helicospiral shells are the most likely shell forms. Our model explains a large diversity of forms and shows that, although molluscan shells are incrementally secreted at their opening, the path followed by the shell edge and the resulting form are partly governed by the mechanics of the body inside the shell, a perspective that explains many aspects of their development and evolution.


2021 ◽  
Author(s):  
Clayton J Harry ◽  
Sonia M Messar ◽  
Erik J Ragsdale

Pristionchus pacificus is a nematode model for the developmental genetics of morphological polyphenism, especially at the level of individual cells. The polyphenism of P. pacificus includes an evolutionary novelty, moveable teeth, which have enabled predatory feeding in this species and others in its family (Diplogastridae). From transmission electron micrographs of serial thin sections through an adult hermaphrodite of P. pacificus, we three-dimensionally reconstructed the 73 epithelial cells of its face, mouth, and pharynx. We found that the epithelia that produce the predatory morphology of P. pacificus are identical to Caenorhabditis elegans in the number of cell classes and nuclei. However, differences in cell form, connectivity, and nucleus position correlate with gross morphological differences from C. elegans and outgroups. Moreover, we identified fine-structural features, especially in the anteriormost pharyngeal muscles, that underlie the conspicuous, left-right asymmetry that characterizes the P. pacificus feeding apparatus. Our reconstruction provides an anatomical map for studying the genetics of polyphenism, feeding behaviour, and the development of novel form in a satellite model to C. elegans.


2021 ◽  
Author(s):  
Isaac Esteban ◽  
Patrick Schmidt ◽  
Susana Temino ◽  
Leif Kobbelt ◽  
Miguel Torres

Understanding organ morphogenesis requires a precise geometrical description of the tissues involved in the process. In highly regulative embryos, like those of mammals, morphological variability hinders the quantitative analysis of morphogenesis. In particular, the study of early heart development in mammals remains a challenging problem, due to imaging limitations and innate complexity. Around embryonic day 7.5 (E7.5), the cardiac crescent folds in an intricate and coordinated manner to produce a pumping linear heart tube at E8.25, followed by heart looping at E8.5. In this work we provide a complete morphological description of this process based on detailed imaging of a temporally dense collection of embryonic heart morphologies. We apply new approaches for morphometric staging and quantification of local morphological variations between specimens at the same stage. We identify hot spots of regionalized variability and identify left-right asymmetry in the inflow region starting at the late cardiac crescent stage, which represents the earliest signs of organ left-right asymmetry in the mammalian embryo. Finally, we generate a 3D+t digital model that provides a framework suitable for co-representation of data from different sources and for the computer modelling of the process.


Author(s):  
Marloes Sparreboom ◽  
Sebastián Ausili ◽  
Martijn J. H. Agterberg ◽  
Emmanuel A. M. Mylanus

Purpose This study aimed to gain more insight into the primary auditory abilities of children with significant residual hearing in order to improve decision making when choosing between bimodal fitting or sequential bilateral cochlear implantation. Method Sound localization abilities, spatial release of masking, and fundamental frequency perception were tested. Nine children with bimodal fitting and seven children with sequential bilateral cochlear implants were included in the study. As a reference, 15 children with normal hearing and two children with simultaneous bilateral cochlear implants were included. Results On all outcome measures, the implanted children performed worse than the normal hearing children. For high-frequency localization, children with sequential bilateral cochlear implants performed significantly better than children with bimodal fitting. Compared to children with normal hearing, the left–right asymmetry in spatial release of masking was significant. When the implant was hindered by noise, bimodally fitted children obtained significantly lower spatial release of masking compared to when the hearing aid was hindered by noise. Overall, the larger the left–right asymmetry in spatial release of masking, the poorer the localization skills. No significant differences were found in fundamental frequency perception between the implant groups. Conclusions The data hint to an advantage of bilateral implantation over bimodal fitting. The extent of asymmetry in spatial release of masking is a promising tool for decision making when choosing whether to continue with the hearing aid or to provide a second cochlear implant in children with significant residual hearing.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0255459
Author(s):  
Seo-Eun Cho ◽  
Chan-A Park ◽  
Kyoung-Sae Na ◽  
ChiHye Chung ◽  
Hyo-Jin Ma ◽  
...  

The habenula (Hb) has been hypothesized to play an essential role in major depressive disorder (MDD) as it is considered to be an important node between fronto-limbic areas and midbrain monoaminergic structures based on animal studies. In this study, we aimed to investigate the differences in volume and T1 value of the Hb between patients with MDD and healthy control (HC) subjects. Analysis for the Hb volumes was performed using high-resolution 7-T magnetic resonance (MR) image data from 33 MDD patients and 36 healthy subjects. Two researchers blinded to the clinical data manually delineated the habenular nuclei and Hb volume, and T1 values were calculated based on overlapping voxels. We compared the Hb volume and T1 value between the MDD and HC groups and compared the volume and T1 values between the left and right Hbs in each group. Compared to HC subjects, MDD patients had a smaller right Hb volume; however, there was no significant volume difference in the left Hb between groups. In the MDD group, the right Hb was smaller in volume and lower in T1 value than the left Hb. The present findings suggest a smaller right Hb volume and left-right asymmetry of Hb volume in MDD. Future high-resolution 7-T MR imaging studies with larger sample sizes will be needed to derive a more definitive conclusion.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Federico Tessadori ◽  
Erika Tsingos ◽  
Enrico Sandro Colizzi ◽  
Fabian Kruse ◽  
Susanne C van den Brink ◽  
...  

Organ laterality refers to the left-right asymmetry in disposition and conformation of internal organs and is established during embryogenesis. The heart is the first organ to display visible left-right asymmetries through its left-sided positioning and rightward looping. Here, we present a new zebrafish loss-of-function allele for tbx5a, which displays defective rightward cardiac looping morphogenesis. By mapping individual cardiomyocyte behavior during cardiac looping, we establish that ventricular and atrial cardiomyocytes rearrange in distinct directions. As a consequence, the cardiac chambers twist around the atrioventricular canal resulting in torsion of the heart tube, which is compromised in tbx5a mutants. Pharmacological treatment and ex vivo culture establishes that the cardiac twisting depends on intrinsic mechanisms and is independent from cardiac growth. Furthermore, genetic experiments indicate that looping requires proper tissue patterning. We conclude that cardiac looping involves twisting of the chambers around the atrioventricular canal, which requires correct tissue patterning by Tbx5a.


Sign in / Sign up

Export Citation Format

Share Document