The auditory-visual articulation Index

2017 ◽  
Vol 141 (5) ◽  
pp. 3509-3509 ◽  
Author(s):  
Ken W. Grant ◽  
Joshua G. Bernstein
Keyword(s):  
2021 ◽  
Vol 69 (2) ◽  
pp. 173-179
Author(s):  
Nilolina Samardzic ◽  
Brian C.J. Moore

Traditional methods for predicting the intelligibility of speech in the presence of noise inside a vehicle, such as the Articulation Index (AI), the Speech Intelligibility Index (SII), and the Speech Transmission Index (STI), are not accurate, probably because they do not take binaural listening into account; the signals reaching the two ears can differ markedly depending on the positions of the talker and listener. We propose a new method for predicting the intelligibility of speech in a vehicle, based on the ratio of the binaural loudness of the speech to the binaural loudness of the noise, each calculated using the method specified in ISO 532-2 (2017). The method was found to give accurate predictions of the speech reception threshold (SRT) measured under a variety of conditions and for different positions of the talker and listener in a car. The typical error in the predicted SRT was 1.3 dB, which is markedly smaller than estimated using the SII and STI (2.0 dB and 2.1 dB, respectively).


Author(s):  
Christopher Dromey ◽  
Michelle Richins ◽  
Tanner Low

Purpose We examined the effect of bite block insertion (BBI) on lingual movements and formant frequencies in corner vowel and diphthong production in a sentence context. Method Twenty young adults produced the corner vowels (/u/, /ɑ/, /æ/, /i/) and the diphthong /ɑɪ/ in sentence contexts before and after BBI. An electromagnetic articulograph measured the movements of the tongue back, middle, and front. Results There were significant decreases in the acoustic vowel articulation index and vowel space area following BBI. The kinematic vowel articulation index decreased significantly for the back and middle of the tongue but not for the front. There were no significant acoustic changes post-BBI for the diphthong, other than a longer transition duration. Diphthong kinematic changes after BBI included smaller movements for the back and middle of the tongue, but not the front. Conclusions BBI led to a smaller acoustic working space for the corner vowels. The adjustments made by the front of the tongue were sufficient to compensate for the BBI perturbation in the diphthong, resulting in unchanged formant trajectories. The back and middle of the tongue were likely biomechanically restricted in their displacement by the fixation of the jaw, whereas the tongue front showed greater movement flexibility.


1990 ◽  
Vol 33 (4) ◽  
pp. 676-689 ◽  
Author(s):  
David A. Fabry ◽  
Dianne J. Van Tasell

The Articulation Index (AI) was used to evaluate an “adaptive frequency response” (AFR) hearing aid with amplification characteristics that automatically change to become more high-pass with increasing levels of background noise. Speech intelligibility ratings of connected discourse by normal-hearing subjects were predicted well by an empirically derived AI transfer function. That transfer function was used to predict aided speech intelligibility ratings by 12 hearing-impaired subjects wearing a master hearing aid with the Argosy Manhattan Circuit enabled (AFR-on) or disabled (AFR-off). For all subjects, the AI predicted no improvements in speech intelligibility for the AFR-on versus AFR-off condition, and no significant improvements in rated intelligibility were observed. The ability of the AI to predict aided speech intelligibility varied across subjects. However, ratings from every hearing-impaired subject were related monotonically to AI. Therefore, AI calculations may be used to predict relative—but not absolute—levels of speech intelligibility produced under different amplification conditions.


1991 ◽  
Vol 34 (2) ◽  
pp. 427-438 ◽  
Author(s):  
Gerald A. Studebaker ◽  
Robert L. Sherbecoe

Frequency-importance and transfer functions for the Technisonic Studios’ recordings of the CID W-22 word test are reported. These functions may be used to calculate Articulation Index (Al) values or to predict scores on the W-22 test. The functions were derived from the word recognition scores of 8 normal-hearing listeners who were tested under 308 conditions of filtering and masking. The importance function for the W-22 test has a broader frequency range and a different shape than the importance function used in the current ANSI standard on the Articulation Index (ANSI, 1969). The transfer function is similar in slope to to the ANSI transfer function for 256 PB-words, but is shifted to the right of that function by 0.05 Al.


1962 ◽  
Vol 34 (11) ◽  
pp. 1698-1702 ◽  
Author(s):  
Karl D. Kryter
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document