Effects of type, token, and talker variability in speech processing efficiency

2019 ◽  
Vol 145 (3) ◽  
pp. 1915-1915
Author(s):  
Alexandra M. Kapadia ◽  
Jessica Tin ◽  
Tyler K. Perrachione
2021 ◽  
Author(s):  
Marlies Gillis ◽  
Lien Decruy ◽  
Jonas Vanthornhout ◽  
Tom Francart

AbstractWe investigated the impact of hearing loss on the neural processing of speech. Using a forward modelling approach, we compared the neural responses to continuous speech of 14 adults with sensorineural hearing loss with those of age-matched normal-hearing peers.Compared to their normal-hearing peers, hearing-impaired listeners had increased neural tracking and delayed neural responses to continuous speech in quiet. The latency also increased with the degree of hearing loss. As speech understanding decreased, neural tracking decreased in both population; however, a significantly different trend was observed for the latency of the neural responses. For normal-hearing listeners, the latency increased with increasing background noise level. However, for hearing-impaired listeners, this increase was not observed.Our results support that the neural response latency indicates the efficiency of neural speech processing. Hearing-impaired listeners process speech in silence less efficiently then normal-hearing listeners. Our results suggest that this reduction in neural speech processing efficiency is a gradual effect which occurs as hearing deteriorates. Moreover, the efficiency of neural speech processing in hearing-impaired listeners is already at its lowest level when listening to speech in quiet, while normal-hearing listeners show a further decrease in efficiently when the noise level increases.From our results, it is apparent that sound amplification does not solve hearing loss. Even when intelligibility is apparently perfect, hearing-impaired listeners process speech less efficiently.


2009 ◽  
Vol 37 (4) ◽  
pp. 817-840 ◽  
Author(s):  
VIRGINIA A. MARCHMAN ◽  
ANNE FERNALD ◽  
NEREYDA HURTADO

ABSTRACTResearch using online comprehension measures with monolingual children shows that speed and accuracy of spoken word recognition are correlated with lexical development. Here we examined speech processing efficiency in relation to vocabulary development in bilingual children learning both Spanish and English (n=26 ; 2 ; 6). Between-language associations were weak: vocabulary size in Spanish was uncorrelated with vocabulary in English, and children's facility in online comprehension in Spanish was unrelated to their facility in English. Instead, efficiency of online processing in one language was significantly related to vocabulary size in that language, after controlling for processing speed and vocabulary size in the other language. These links between efficiency of lexical access and vocabulary knowledge in bilinguals parallel those previously reported for Spanish and English monolinguals, suggesting that children's ability to abstract information from the input in building a working lexicon relates fundamentally to mechanisms underlying the construction of language.


2020 ◽  
Vol 148 (4) ◽  
pp. 2507-2507
Author(s):  
Sung-Joo Lim ◽  
Barbara Shinn-Cunningham ◽  
Tyler K. Perrachione

2009 ◽  
Vol 14 (1) ◽  
pp. 78-89 ◽  
Author(s):  
Kenneth Hugdahl ◽  
René Westerhausen

The present paper is based on a talk on hemispheric asymmetry given by Kenneth Hugdahl at the Xth European Congress of Psychology, Praha July 2007. Here, we propose that hemispheric asymmetry evolved because of a left hemisphere speech processing specialization. The evolution of speech and the need for air-based communication necessitated division of labor between the hemispheres in order to avoid having duplicate copies in both hemispheres that would increase processing redundancy. It is argued that the neuronal basis of this labor division is the structural asymmetry observed in the peri-Sylvian region in the posterior part of the temporal lobe, with a left larger than right planum temporale area. This is the only example where a structural, or anatomical, asymmetry matches a corresponding functional asymmetry. The increase in gray matter volume in the left planum temporale area corresponds to a functional asymmetry of speech processing, as indexed from both behavioral, dichotic listening, and functional neuroimaging studies. The functional anatomy of the corpus callosum also supports such a view, with regional specificity of information transfer between the hemispheres.


2010 ◽  
Vol 31 (3) ◽  
pp. 130-137 ◽  
Author(s):  
Hagen C. Flehmig ◽  
Michael B. Steinborn ◽  
Karl Westhoff ◽  
Robert Langner

Previous research suggests a relationship between neuroticism (N) and the speed-accuracy tradeoff in speeded performance: High-N individuals were observed performing less efficiently than low-N individuals and compensatorily overemphasizing response speed at the expense of accuracy. This study examined N-related performance differences in the serial mental addition and comparison task (SMACT) in 99 individuals, comparing several performance measures (i.e., response speed, accuracy, and variability), retest reliability, and practice effects. N was negatively correlated with mean reaction time but positively correlated with error percentage, indicating that high-N individuals tended to be faster but less accurate in their performance than low-N individuals. The strengthening of the relationship after practice demonstrated the reliability of the findings. There was, however, no relationship between N and distractibility (assessed via measures of reaction time variability). Our main findings are in line with the processing efficiency theory, extending the relationship between N and working style to sustained self-paced speeded mental addition.


Sign in / Sign up

Export Citation Format

Share Document