hemispheric asymmetry
Recently Published Documents


TOTAL DOCUMENTS

867
(FIVE YEARS 101)

H-INDEX

63
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Felix Ploeger ◽  
Hella Garny

Abstract. Despite the expected opposite effects of ozone recovery, the stratospheric Brewer-Dobson circulation (BDC) has been found to weaken in the Northern hemisphere (NH) relative to the Southern hemisphere (SH) in recent decades, inducing substantial effects on chemical composition. We investigate hemispheric asymmetries in BDC changes since about 2000 in simulations with the transport model CLaMS driven with different reanalyses (ERA5, ERA-Interim, JRA-55, MERRA-2) and contrast those to a suite of free-running climate model simulations. We find that age of air increases robustly in the NH stratosphere relative to the SH in all reanalyses considered. Related nitrous oxide changes agree well between reanalysis-driven simulations and satellite measurements, providing observational evidence for the hemispheric asymmetry in BDC changes. Residual circulation metrics further show that the composition changes are caused by structural BDC changes related to an upward shift and strengthening of the deep BDC branch, resulting in longer transit times, and a downward shift and weakening shallow branch in the NH relative to the SH. All reanalyses agree on this mechanism. Although climate model simulations show that ozone recovery will lead to overall reduced circulation and age of air trends, the hemispherically asymmetric signal in circulation trends is small compared to internal variability. Therefore, the observed circulation trends over the recent past are not in contradiction to expectations from climate models. Furthermore, the hemispheric asymmetry in BDC trends imprints on the composition of the lower stratosphere and the signal might propagate into the troposphere, potentially affecting composition down to the surface.


2022 ◽  
Vol 12 ◽  
Author(s):  
Xiaofan Xu ◽  
Bingbing Li ◽  
Ping Liu ◽  
Dan Li

Previous neurological studies of shyness have focused on the hemispheric asymmetry of alpha spectral power. To the best of our knowledge, few studies have focused on the interaction between different frequencies bands in the brain of shyness. Additionally, shy individuals are even shyer when confronted with a group of people they consider superior to them. This study aimed to reveal the neural basis of shy individuals using the delta-beta correlation. Further, it aimed to investigate the effect of evaluators’ facial attractiveness on the delta-beta correlation of shyness during the speech anticipation phase. We recorded electroencephalogram (EEG) activity of 94 participants during rest and anticipation of the public speaking phase. Moreover, during the speech anticipation phase, participants were presented with high or low facial attractiveness. The results showed that, as predicted, the delta-beta correlation in the frontal region was more robust for high shyness than for low shyness during the speech anticipation phase. However, no significant differences were observed in the delta-beta correlation during the baseline phase. Further exploration found that the delta-beta correlation was more robust for high facial attractiveness than low facial attractiveness in the high shyness group. However, no significant difference was found in the low-shyness group. This study suggests that a stronger delta-beta correlation might be the neural basis for shy individuals. Moreover, high facial attractiveness might enhance the delta-beta correlation of high shyness in anticipation of public speaking.


Author(s):  
Mackenzie S. Kagan ◽  
Chandler R. L. Mongerson ◽  
David Zurakowski ◽  
Russell W. Jennings ◽  
Dusica Bajic

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Vivien Reicher ◽  
Anna Kis ◽  
Péter Simor ◽  
Róbert Bódizs ◽  
Márta Gácsi

AbstractFunctional hemispheric asymmetry was evidenced in many species during sleep. Dogs seem to show hemispheric asymmetry during wakefulness; however, their asymmetric neural activity during sleep was not yet explored. The present study investigated interhemispheric asymmetry in family dogs using non-invasive polysomnography. EEG recordings during 3-h-long afternoon naps were carried out (N = 19) on two occasions at the same location. Hemispheric asymmetry was assessed during NREM sleep, using bilateral EEG channels. To include periods with high homeostatic sleep pressure and to reduce the variance of the time spent in NREM sleep between dogs, the first two sleep cycles were analysed. Left hemispheric predominance of slow frequency range was detected in the first sleep cycle of sleep recording 1, compared to the baseline level of zero asymmetry as well as to the first sleep cycle of sleep recording 2. Regarding the strength of hemispheric asymmetry, we found greater absolute hemispheric asymmetry in the second sleep cycle of sleep recording 1 and 2 in the frequency ranges of alpha, sigma and beta, compared to the first sleep cycle. Differences between sleep recordings and consecutive sleep cycles might be indicative of adaptation-like processes, but do not closely resemble the results described in humans.


2021 ◽  
Vol 11 (9) ◽  
pp. 1115 ◽  
Author(s):  
Maria Casagrande ◽  
Francesca Agostini ◽  
Francesca Favieri ◽  
Giuseppe Forte ◽  
Jasmine Giovannoli ◽  
...  

Many cognitive functions face a decline in the healthy elderly. Within the cognitive domains, both attentional processes and executive functions are impaired with aging. Attention includes three attentional networks, i.e., alerting, orienting, and executive control, showing a hemispheric lateralized pattern in adults. This lateralized pattern could play a role in modulating the efficiency of attentional networks. For these reasons, it could be relevant to analyze the age-related change of the hemispheric specialization of attentional networks. This study aims to clarify this aspect with a lateralized version of the Attentional Network Test for Interaction (ANTI)-Fruit. One hundred seventy-one participants took part in this study. They were divided in three age groups: youth (N = 57; range: 20–30); adults (N = 57; range 31–64), and elderly/older people (N = 57; range: 65–87). The results confirmed the previous outcomes on the efficiency and interactions among attentional networks. Moreover, an age-related generalized slowness was evidenced. These findings also support the hypothesis of a hemispheric asymmetry reduction in elderly/older adults.


Sign in / Sign up

Export Citation Format

Share Document