scholarly journals Interaction of a normally-incident plane wave with a nonlinear poroelastic fracture

2019 ◽  
Vol 146 (3) ◽  
pp. 1705-1720
Author(s):  
Seiji Nakagawa ◽  
Steven R. Pride ◽  
Kurt T. Nihei
Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 99
Author(s):  
Qaisar Hayat ◽  
Junping Geng ◽  
Xianling Liang ◽  
Ronghong Jin ◽  
Sami Ur Rehman ◽  
...  

The enhancement of optical characteristics at optical frequencies deviates with the choice of the arrangement of core-shell nanoparticles and their environment. Likewise, the arrangements of core-shell nanoparticles in the air over a substrate or in liquid solution makes them unstable in the atmosphere. This article suggests designing a configuration of an active spherical coated nanoparticle antenna and its extended array in the presence of a passive dielectric, which is proposed to be extendable to construct larger arrays. The issue of instability in the core-shell nanoantenna array models is solved here by inserting the passive dielectric. In addition to this, the inclusion of a dielectric in the array model reports a different directivity behaviour than the conventional array models. We found at first that the combination model of the active coated nanoparticle and passive sphere at the resonant frequency can excite a stronger field with a rotated polarization direction and a propagation direction different from the incident plane-wave. Furthermore, the extended 2D array also rotates the polarization direction and propagation direction for the vertical incident plane-wave. The radiation beam operates strong multipoles in the 2D array plane at resonant frequency (behaving non-conventionally). Nevertheless, it forms a clear main beam in the incident direction when it deviates from the resonance frequency (behaving conventionally). The proposed array model may have possible applications in nano-amplifiers, nano-sensors and other integrated optics.


2018 ◽  
Vol 74 (6) ◽  
pp. 673-680 ◽  
Author(s):  
V. G. Kohn

The article reports an accurate theory of X-ray coplanar multiple diffraction for an experimental setup that consists of a generic synchrotron radiation (SR) source, double-crystal monochromator (M) and slit (S). It is called for brevity the theory of X-ray coplanar multiple SRMS diffractometry. The theory takes into account the properties of synchrotron radiation as well as the features of diffraction of radiation in the monochromator crystals and the slit. It is shown that the angular and energy dependence (AED) of the sample reflectivity registered by a detector has the form of a convolution of the AED in the case of the monochromatic plane wave with the instrumental function which describes the angular and energy spectrum of radiation incident on the sample crystal. It is shown that such a scheme allows one to measure the rocking curves close to the case of the monochromatic incident plane wave, but only using the high-order reflections by monochromator crystals. The case of four-beam (220)(331)({\overline {11}}1) diffraction in Si is considered in detail.


Radio Science ◽  
1978 ◽  
Vol 13 (1) ◽  
pp. 107-119 ◽  
Author(s):  
R. W. P. King ◽  
D. J. Blejer ◽  
S.-K. Wan ◽  
R. W. Burton

Sign in / Sign up

Export Citation Format

Share Document