Numerical modeling of mesoscale infrasound propagation in the Arctic

2022 ◽  
Vol 151 (1) ◽  
pp. 138-157
Author(s):  
D. Keith Wilson ◽  
Michael J. Shaw ◽  
Vladimir E. Ostashev ◽  
Michael B. Muhlestein ◽  
Ross E. Alter ◽  
...  
2000 ◽  
Vol 105 (C7) ◽  
pp. 17143-17159 ◽  
Author(s):  
Vitaly Y. Alexandrov ◽  
Thomas Martin ◽  
Josef Kolatschek ◽  
Hajo Eicken ◽  
Martin Kreyscher ◽  
...  

2021 ◽  
Vol 13 (21) ◽  
pp. 4436
Author(s):  
Elena Golubeva ◽  
Marina Kraineva ◽  
Gennady Platov ◽  
Dina Iakshina ◽  
Marina Tarkhanova

We used a satellite-derived global daily sea surface temperature (SST) dataset with resolution 0.25 × 0.25∘ to analyze interannual changes in the Arctic Shelf seas from 2000 to 2020 and to reveal extreme events in SST distribution. Results show that the second decade of the 21st century for the Siberian Arctic seas turned significantly warmer than the first decade, and the increase in SST in the Arctic seas could be considered in terms of marine heatwaves. Analyzing the spatial distribution of heatwaves and their characteristics, we showed that from 2018 to 2020, the surface warming extended to the northern deep-water region of the Laptev Sea 75∘ to 81∘N. To reveal the most important forcing for the northward extension of the marine heatwaves, we used three-dimensional numerical modeling of the Arctic Ocean based on a sea-ice and ocean model forced by the NCEP/NCAR Reanalysis. The simulation of the Arctic Ocean variability from 2000 to 2020 showed marine heatwaves and their increasing intensity in the northern region of the Kara and Laptev seas, closely connected to the disappearance of ice cover. A series of numerical experiments on the sensitivity of the model showed that the main factors affecting the Arctic sea-ice loss and the formation of anomalous temperature north of the Siberian Arctic seas are equally the thermal and dynamic effects of the atmosphere. Numerical modeling allows us to examine the impact of other physical mechanisms as well. Among them were the state of the ocean and winter sea ice, the formation of fast ice polynias and riverine heat influx.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Tatiana Talipova ◽  
Efim Pelinovsky ◽  
Oxana Kurkina ◽  
Andrey Kurkin

Numerical modeling of dispersive shock waves called solibore in a stratified fluid is conducted. The theoretical model is based on extended version of the Korteweg-de Vries equation which takes into account the effects of cubic nonlinearity and Earth rotation. This model is now very popular in the physical oceanography. Initial conditions for simulations correspond to the real observed internal waves of shock-like shape in the Pechora Sea, the Arctic. It is shown that a sharp drop (like kink in the soliton theory) in the depth of the thermocline is conserved at a distance of one–three kilometers, and then it is transformed into dispersive shock waves (shock wave with undulations).


2016 ◽  
Vol 8 (4) ◽  
pp. 348-357 ◽  
Author(s):  
A. V. Favorskaya ◽  
I. B. Petrov ◽  
D. I. Petrov ◽  
N. I. Khokhlov

Sign in / Sign up

Export Citation Format

Share Document