The Effect of Blood Flow Restriction on Muscle Hypertrophy and Tendon Thickness in Healthy Adults’ Distal Lower-Extremity: A Critically Appraised Topic

2021 ◽  
pp. 1-5
Author(s):  
Daniel R. Post ◽  
William A. Stackhouse ◽  
Jennifer L. Ostrowski ◽  
Jordan D. Bettleyon ◽  
Ellen K. Payne
2013 ◽  
Vol 34 (4) ◽  
pp. 317-321 ◽  
Author(s):  
Ryan P. Lowery ◽  
Jordan M. Joy ◽  
Jeremy P. Loenneke ◽  
Eduardo O. de Souza ◽  
Marco Machado ◽  
...  

2019 ◽  
Vol 127 (5) ◽  
pp. 1288-1296
Author(s):  
Madoka Yoshikawa ◽  
Takeshi Morifuji ◽  
Tomohiro Matsumoto ◽  
Noriaki Maeshige ◽  
Minoru Tanaka ◽  
...  

This study aimed to clarify the effects of a combined treatment comprising blood flow restriction and low-current electrical stimulation on skeletal muscle hypertrophy in rats. Male Wistar rats were divided into control (Cont), blood flow restriction (Bfr), electrical stimulation (Es), or Bfr with Es (Bfr + Es) groups. Pressure cuffs (80 mmHg) were placed around the thighs of Bfr and Bfr + Es rats. Low-current Es was applied to calf muscles in the Es and Bfr + Es rats. In experiment 1, a 1-day treatment regimen (5-min stimulation, followed by 5-min rest) was delivered four times to study the acute effects. In experiment 2, the same treatment regimen was delivered three times/wk for 8 wk. Body weight, muscle mass, changes in maximal isometric contraction, fiber cross-sectional area of the soleus muscle, expression of phosphorylated and total-ERK1/2, phosphorylated-rpS6 Ser235/236, phosphorylated and total Akt, and phosphorylated-rpS6 Ser240/244 were measured. Bfr and Es treatment alone failed to induce muscle hypertrophy and increase the expression of phosphorylated rpS6 Ser240/244. Combined Bfr + Es upregulated muscle mass, increased the fiber cross-sectional area, and increased phosphorylated rpS6 Ser240/244 expression and phosphorylated rpS6 Ser235/236 expression compared with controls. Combined treatment with Bfr and low-current Es can induce muscle hypertrophy via activation of two protein synthesis signaling pathways. This treatment should be introduced for older patients with sarcopenia and others with muscle weakness. NEW & NOTEWORTHY We investigated the acute and chronic effect of low-current electrical stimulation with blood flow restriction on skeletal muscle hypertrophy and the mechanisms controlling the hypertrophic response. Low-current electrical stimulation could not induce skeletal muscle hypertrophy, but a combination treatment did. Blood lactate and growth hormone levels were increased in the early response. Moreover, activation of ERK1/2 and mTOR pathways were observed in both the acute and chronic response, which contribute to muscle hypertrophy.


2019 ◽  
Vol 44 (6) ◽  
pp. 637-644
Author(s):  
Toshiharu Natsume ◽  
Toshinori Yoshihara ◽  
Hisashi Naito

Neuromuscular electrical stimulation (NMES) combined with blood flow restriction (BFR) induces muscle hypertrophy. However, cellular mechanisms underlying the muscle hypertrophy induced by NMES combined with BFR remain unclear. We tested the hypothesis that NMES combined with BFR would enhance the mechanistic target of rapamycin (mTOR) and mitogen-activated protein kinase (MAPK) signaling pathways. Age-matched male Wistar rats (6 months old, n = 7 per group) were assigned randomly to control, BFR alone (BFR), NMES alone (NMES), and NMES combined with BFR (NMES/BFR) groups. NMES induced 25 isometric contractions lasting 8 s with 4-s resting periods between contractions in the gastrocnemius muscle. Four sets in total were performed, with 1-min intervals between sets. A latex cuff was placed on the proximal portion of the hind limb and BFR at 200 mm Hg was conducted in 4 sets (each set 5 min) with 1-min rest intervals between sets. Venous blood was collected from the lateral tail vein to determine pH, H+ concentration, and lactate concentration before and immediately after the treatments. Expression levels of proteins related to muscle hypertrophy were determined by Western blot analysis. The application of NMES/BFR promoted muscle fatigue more than NMES alone. NMES/BFR induced greater changes in accumulation of metabolites and increase in gastrocnemius muscle weight. The phosphorylation of mTOR and MAPK signaling-related proteins was also enhanced following NMES/BFR, compared with other conditions. Thus, NMES enhanced the activation of mTOR and MAPK signaling pathways when combined with BFR.


2014 ◽  
Vol 11 (Suppl 1) ◽  
pp. P18 ◽  
Author(s):  
John O'Halloran ◽  
Bill Campbell ◽  
Nicholas Martinez ◽  
Shane O’Connor ◽  
Jonathan Fuentes ◽  
...  

2012 ◽  
Vol 44 (07) ◽  
pp. 489-493 ◽  
Author(s):  
J. Loenneke ◽  
J. Wilson ◽  
R. Thiebaud ◽  
T. Abe ◽  
R. Lowery ◽  
...  

2021 ◽  
Vol 78 (1) ◽  
pp. 101-109
Author(s):  
Moisés Picón-Martínez ◽  
Iván Chulvi-Medrano ◽  
Juan Manuel Cortell-Tormo ◽  
Diego A. Alonso-Aubin ◽  
Yasser Alakhdar ◽  
...  

Abstract The Achilles tendon is one of the strongest and thickest tendons of the human body. Several studies have reported an immediate decrease in Achilles tendon thickness after a single bout of resistance training. However, the effects of blood flow restriction training on Achilles tendon thickness have not been investigated. The purpose of this study was to investigate the acute effects of different regimens of resistance training on Achilles tendon thickness. Fiftytwo participants (27.3 ± 7 years; 177.6 ± 11 cm; 72.2 ± 13.7 kg) were randomly allocated into one of the three groups: low-intensity exercise without (LI, n = 13) and with blood flow restriction (LI-BFR, n = 24), and high-intensity exercise (HI, n = 15). Participants from LI and LI-BFR groups performed four sets (1 x 30 + 3 x 15 reps) at 30% 1RM, while the HI group performed four sets (1 x 30 with 30% 1RM + 3 x 10 reps with 75% 1RM). All groups performed a plantar flexion exercise. For the LI-BFR group, a blood pressure cuff was placed on the dominant calf and inflated at 30% of the individual´s occlusion pressure (47.6 ± 19.8 mmHg). Sonographic images of Achilles tendon thickness were taken at pre, immediately after, 60 min and 24 h following acute bouts of exercise. Achilles tendon thickness was significantly reduced immediately after, 60 min and 24 h post-LI-BFR exercise (pre: 4.4 ± 0.4 mm vs. IA: 3.8 ± 0.4 mm vs. 60 min: 3.7 ± 0.3 mm vs. 24 h: 4.1 ± 0.3 mm; p < 0.001), whereas Achilles tendon thickness was unchanged for HI and LI groups (p > 0.05). These results suggest that blood flow restriction training may be an effective strategy to stimulate a positive response in Achilles tendon thickness.


2020 ◽  
pp. 1-6
Author(s):  
Iván Chulvi-Medrano ◽  
Moisés Picón-Martínez ◽  
Juan Manuel Cortell-Tormo ◽  
Juan Tortosa-Martínez ◽  
Diego Alexandre Alonso-Aubin ◽  
...  

Context: Blood flow restriction research has focused on muscular strength and hypertrophy. Limited data have been reported about the blood flow restriction effect on the tendon. Objective: To analyze and compare the time course of recovery in Achilles tendon thickness after a single bout of low-intensity resistance training (LI-RT) and low-intensity blood flow restriction training (LI-BFRT). Methods: A total of 56 healthy participants (24.60 [4.0] y; 23.65 [3.4] body mass index) were included. The dominant leg was assigned for LI-BFRT using low load (30% 1-repetition maximum) and 30% of the total occlusion pressure (52.21 [17.89] mm Hg) in plantar-flexion exercise (1 × 30 + 3 × 15 repetitions). The nondominant leg was assumed as a control condition. Main Outcome Measure: Sonography images were taken before the intervention, immediately posttraining, and 24 hours after exercise (post-24) for the Achilles tendon thickness. Results: Changes in Achilles tendon thickness for LI-BFRT group were significant post- (−14.5%; P < .05) and post-24 (−9.2%; P < .05). In contrast, LI-RT group showed a transient decrease after exercise (−9.67%; P < .05) followed by a recovery of thickness post-24 (−1.06%; P < .05). Thickness post-24 was different between LI-BFRT versus LI-RT (P < .01). Hedge effect size analysis showed a large effect (g = 0.90) in LI-BFRT pre–post condition and a medium effect (g = 0.57) in post- to post-24. The LI-RT obtained a medium effect (g = 0.53) in pre–post condition and a small effect (g = 0.49) in post- to post-24. Conclusions: This study showed a different time course of the acute response in Achilles tendon thickness between LI-BFRT and LI-RT. This may be associated with intratendinous fluid movement in response to LI-BFRT.


Sign in / Sign up

Export Citation Format

Share Document