scholarly journals Readout and control of the spin-orbit states of two coupled acceptor atoms in a silicon transistor

2018 ◽  
Vol 4 (12) ◽  
pp. eaat9199 ◽  
Author(s):  
Joost van der Heijden ◽  
Takashi Kobayashi ◽  
Matthew G. House ◽  
Joe Salfi ◽  
Sylvain Barraud ◽  
...  

Coupling spin qubits to electric fields is attractive to simplify qubit manipulation and couple qubits over long distances. Electron spins in silicon offer long lifetimes, but their weak spin-orbit interaction makes electrical coupling challenging. Hole spins bound to acceptor dopants, spin-orbit–coupled J = 3/2 systems similar to Si vacancies in SiC and single Co dopants, are an electrically active spin system in silicon. However, J = 3/2 systems are much less studied than S = 1/2 electrons, and spin readout has not yet been demonstrated for acceptors in silicon. Here, we study acceptor hole spin dynamics by dispersive readout of single-hole tunneling between two coupled acceptors in a nanowire transistor. We identify mJ = ±1/2 and mJ = ±3/2 levels, and we use a magnetic field to overcome the initial heavy-light hole splitting and to tune the J = 3/2 energy spectrum. We find regimes of spin-like (+3/2 to −3/2) and charge-like (±1/2 to ±3/2) relaxations, separated by a regime of enhanced relaxation induced by mixing of light and heavy holes. The demonstrated control over the energy level ordering and hybridization are new tools in the J = 3/2 system that are crucial to optimize single-atom spin lifetime and electrical coupling.

2020 ◽  
Vol 6 (27) ◽  
pp. eaba3442 ◽  
Author(s):  
Mateusz T. Mądzik ◽  
Thaddeus D. Ladd ◽  
Fay E. Hudson ◽  
Kohei M. Itoh ◽  
Alexander M. Jakob ◽  
...  

The quantum coherence and gate fidelity of electron spin qubits in semiconductors are often limited by nuclear spin fluctuations. Enrichment of spin-zero isotopes in silicon markedly improves the dephasing time T2*, which, unexpectedly, can extend two orders of magnitude beyond theoretical expectations. Using a single-atom 31P qubit in enriched 28Si, we show that the abnormally long T2* is due to the freezing of the dynamics of the residual 29Si nuclei, caused by the electron-nuclear hyperfine interaction. Inserting a waiting period when the electron is controllably removed unfreezes the nuclear dynamics and restores the ergodic T2* value. Our conclusions are supported by a nearly parameter-free modeling of the 29Si nuclear spin dynamics, which reveals the degree of backaction provided by the electron spin. This study clarifies the limits of ergodic assumptions in nuclear bath dynamics and provides previously unidentified strategies for maximizing coherence and gate fidelity of spin qubits in semiconductors.


2008 ◽  
Vol 100 (25) ◽  
Author(s):  
Michael Krauß ◽  
Martin Aeschlimann ◽  
Hans Christian Schneider

Sign in / Sign up

Export Citation Format

Share Document